Journal of Engineering Mathematics

, Volume 73, Issue 1, pp 3–16 | Cite as

Influence of gravity on the spreading of two-dimensional droplets over topographical substrates

  • N. Savva
  • S. KalliadasisEmail author


The influence of gravity on the motion of a two-dimensional droplet of a partially wetting fluid over a topographical substrate is considered. The spreading dynamics is modeled under the assumption of small contact angles in which case the long-wave expansion in the Stokes-flow regime can be employed to derive a single equation for the evolution of the droplet thickness. The relative importance of gravity to capillarity in the equation is measured by the Bond number which is taken to be low to moderate. In this regime, the flow in the vicinity of the contact line is matched asymptotically through a singular perturbation approach to the flow in the bulk of the droplet to yield a set of coupled integrodifferential equations for the location of the two droplet fronts. The matching procedure is verified through direct comparisons with numerical solutions to the full problem. The equations obtained by asymptotic matching are analyzed in the phase plane and the effects of Bond number on the droplet dynamics and its equilibria are scrutinized.


Droplet spreading Gravity Singular perturbations Topography Wetting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blossey R (2003) Self-cleaning surfaces—virtual realities. Nat Mater 2: 301–306ADSCrossRefGoogle Scholar
  2. 2.
    Chu K-H, Xiao R, Wang EN (2010) Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat Mater 9(5): 413–417ADSCrossRefGoogle Scholar
  3. 3.
    Dussan VEB (1979) On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu Rev Fluid Mech 11: 371–400ADSCrossRefGoogle Scholar
  4. 4.
    de Gennes P-G (1985) Wetting: statics and dynamics. Rev Mod Phys 57: 827–863ADSCrossRefGoogle Scholar
  5. 5.
    Blake TD (1993) Dynamic contact angles and wetting kinetics. In: Berg JC (ed) Wettability, chap 5. Marcel Dekker Inc., New York, pp 251–310Google Scholar
  6. 6.
    Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E (2009) Wetting and spreading. Rev Mod Phys 81: 739–805ADSCrossRefGoogle Scholar
  7. 7.
    Huh C, Scriven LE (1971) Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J Colloid Interface Sci 35: 85–101CrossRefGoogle Scholar
  8. 8.
    Voinov OV (1976) Hydrodynamics of wetting. Fluid Dyn 11: 714–721ADSCrossRefGoogle Scholar
  9. 9.
    Greenspan HP (1978) On the motion of a small viscous droplet that wets a surface. J Fluid Mech 84: 125–143ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    Hocking LM (1983) The spreading of a thin drop by gravity and capillarity. Q J Mech Appl Math 36: 55–69zbMATHCrossRefGoogle Scholar
  11. 11.
    Hocking LM (1994) The spreading of drops with intermolecular forces. Phys Fluids 6: 3224–3228ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    Pismen LM, Eggers J (2008) Solvability condition for the moving contact line. Phys Rev E 78: 056304MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    Ehrhard P, Davis SH (1991) Non-isothermal spreading of liquid drops on horizontal plates. J Fluid Mech 229: 365–388ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Schwartz LW, Eley RR (1998) Simulation of droplet motion on low-energy and heterogeneous surfaces. J Colloid Interface Sci 202: 173–188CrossRefGoogle Scholar
  15. 15.
    Sodtke C, Ajaev VS, Stephan P (2008) Dynamics of volatile liquid droplets on heated surfaces: theory versus experiment. J Fluid Mech 610: 343–362MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 16.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28: 988–994CrossRefGoogle Scholar
  17. 17.
    Shuttleworth R, Bailey GLJ (1948) The spreading of a liquid over a rough solid. Discuss Faraday Soc 3: 16–22CrossRefGoogle Scholar
  18. 18.
    Johnson RE, Dettre RH (1964) Contact angle hysteresis. I. Study of an idealized rough surface. Adv Chem Ser 43: 112–135CrossRefGoogle Scholar
  19. 19.
    Johnson RE, Dettre RH, Brandreth DA (1977) Dynamic contact angles and contact angle hysteresis. J Colloid Interface Sci 62: 205–212CrossRefGoogle Scholar
  20. 20.
    Huh C, Mason SG (1977) Effects of surface roughness on wetting (theoretical). J Colloid Interface Sci 60: 11–38CrossRefGoogle Scholar
  21. 21.
    Gramlich CM, Mazouchi A, Homsy GM (2004) Time-dependent free surface Stokes flow with a moving contact line. II. Flow over wedges and trenches. Phys Fluids 16: 1660–1667MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    Gaskell PH, Jimack PK, Sellier M, Thompson HM (2004) Efficient and accurate time adaptive multigrid simulations of droplet spreading. Int J Numer Methods Fluids 45: 1161–1186zbMATHCrossRefGoogle Scholar
  23. 23.
    Troian S, Herbolzheimer S, Safran S, Joanny J (1989) Fingering instabilities of driven spreading films. Europhys Lett 10: 25–39ADSCrossRefGoogle Scholar
  24. 24.
    Kalliadasis S (2000) Nonlinear instability of a contact line driven by gravity. J Fluid Mech 413: 355–378MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. 25.
    Savva N, Kalliadasis S (2009) Two-dimensional droplet spreading over topographical substrates. Phys Fluids 21: 092102ADSCrossRefGoogle Scholar
  26. 26.
    Savva N, Kalliadasis S, Pavliotis GA (2010) Two-dimensional droplet spreading over random topographical substrates. Phys Rev Lett 104: 084501ADSCrossRefGoogle Scholar
  27. 27.
    McHale G, Newton MI, Rowan SM, Banerjee M (1995) The spreading of small viscous stripes of oil. J Appl Phys D Appl Phys 28: 1925–1929ADSCrossRefGoogle Scholar
  28. 28.
    Hocking LM (1981) Sliding and spreading of two-dimensional drops. Q J Mech Appl Math 34: 37–55MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Reznik SN, Zussman E, Yarin AL (2002) Motion of an inclined plate supported by a sessile two-dimensional drop. Phys Fluids 14: 107–117MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    Lister JR, Morrison NF, Rallison JM (2006) Sedimentation of a two-dimensional drop towards a rigid horizontal plane. J Fluid Mech 552: 345–351ADSzbMATHCrossRefGoogle Scholar
  31. 31.
    Zhang J, Miksis MJ, Bankoff SG (2006) Nonlinear dynamics of a two-dimensional viscous drop under shear flow. Phys Fluids 18: 072106ADSCrossRefGoogle Scholar
  32. 32.
    Nakaya C (1974) Spread of fluid drops over a horizontal plane. J Phys Soc Jpn 37: 539–543ADSCrossRefGoogle Scholar
  33. 33.
    Roux DCD, Cooper-White JJ (2004) Dynamics of water spreading on a glass surface. J Colloid Interface Sci 277: 424–436CrossRefGoogle Scholar
  34. 34.
    Lauga E, Brenner MP, Stone HA (2008) Microfluidics: the no-slip boundary condition. In: Tropea C, Foss JF, Yarin A (eds) Springer handbook of experimental fluid mechanics, chap 19. Springer, New YorkGoogle Scholar
  35. 35.
    Cox RG (1983) The spreading of a liquid on a rough solid surface. J Fluid Mech 131: 1–26MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. 36.
    Miksis MJ, Davis SH (1994) Slip over rough and coated surfaces. J Fluid Mech 273: 125–139ADSzbMATHCrossRefGoogle Scholar
  37. 37.
    Saprykin S, Trevelyan PMJ, Koopmans RJ, Kalliadasis S (2007) Free-surface thin-film flows over uniformly heated topography. Phys Rev E 75: 026306MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Chemical EngineeringImperial College LondonLondonUK

Personalised recommendations