Journal of Engineering Mathematics

, Volume 69, Issue 1, pp 101–110 | Cite as

Forced-convection heat transfer over a circular cylinder with Newtonian heating

  • M. Z. Salleh
  • R. Nazar
  • N. M. Arifin
  • I. Pop
  • J. H. Merkin


A mathematical model for the forced convection boundary-layer flow over a circular cylinder is considered when there is Newtonian heating on the surface of the cylinder through which the heat transfer is proportional to the local surface temperature. The dimensionless version of the boundary-layer equations involve two parameters, the Prandtl number σ and γ measuring the strength of the surface heating. The solution near the stagnation point is considered first and this reveals that, to get a physically acceptable solution, γ must be less than some critical value γ c , dependent on σ. Numerical solutions to the full boundary-layer problem are obtained which show that the surface temperature increases as the flow develops from the stagnation point.


Boundary-layer flow Circular cylinder Forced convection Newtonian heating Stagnation point flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer, BerlinMATHGoogle Scholar
  2. 2.
    Rosenhead, L (eds) (1963) Laminar boundary layers. Clarendon Press, OxfordMATHGoogle Scholar
  3. 3.
    Blasius H (1908) Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 56: 1–37Google Scholar
  4. 4.
    Hiemenz K (1911) Die Grenzschicht an einem in den gleichfömigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers J 326: 321–324Google Scholar
  5. 5.
    Terrill RM (1960) Laminar boundary-layer flow near separation with and without suction. Philos Trans Roy Soc Lond A 253: 55–100CrossRefMathSciNetADSMATHGoogle Scholar
  6. 6.
    Goldstein S (1948) On laminar boundary-layer flow near a position of separation. Q J Mech Appl Math 1: 43–69MATHCrossRefGoogle Scholar
  7. 7.
    Stewartson K (1958) On the Goldstein theory of laminar separation. Q J Mech Appl Math 11: 399–410MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Frössling N (1940) Verdungstung Wärmeübergang und Geschwindigkeitsverteilung bei zweidimensionaler und rotations symmetrischer laminarer Grenzschichtströmung. Lunds Univ Arsskr NF Avd 2 36(4)Google Scholar
  9. 9.
    Koh JCY (1964) Laminar free convection from a horizontal cylinder. In: Paper 76-HT-16 ASME-AIChE heat transfer conference, vol 7, pp 811–813Google Scholar
  10. 10.
    Saville DA, Churchill SW (1967) Laminar free convection in boundary layers near horizontal cylinders and vertical axisymmetric bodies. J Fluid Mech 29: 391–399MATHCrossRefADSGoogle Scholar
  11. 11.
    Elliott L (1970) Free convection on a two-dimensional or axisymmetric body. Q J Mech Appl Math 23: 153–162MATHCrossRefGoogle Scholar
  12. 12.
    Wilks G (1972) External natural convection about two-dimensional bodies with constant heat flux. Int J Heat Mass Transf 15: 351–354CrossRefGoogle Scholar
  13. 13.
    Merkin JH, Pop I (1988) A note on the free convection boundary layer on a horizontal circular cylinder with constant heat flux. Wärme-und-Stoffübertragung 22: 79–81CrossRefADSGoogle Scholar
  14. 14.
    Merkin JH (1977) Mixed convection from a horizontal circular cylinder. Int J Heat Mass Transf 20: 73–77CrossRefGoogle Scholar
  15. 15.
    Pop I, Sunada JK, Cheng P, Minkowycz WJ (1985) Conjugate free convection from long vertical plate fins embedded in a porous medium. Int J Heat Mass Transf 28: 1629–1636CrossRefGoogle Scholar
  16. 16.
    Pozzi A, Lupo M (1988) The coupling of conduction with laminar natural convection along a flat plate. Int J Heat Mass Transf 31: 1807–1814MATHCrossRefGoogle Scholar
  17. 17.
    Chaudhary RC, Jain P (2007) An exact solution to the unsteady free convection boundary-layer flow past an impulsively started vertical surface with Newtonian heating. J Eng Phys Thermophys 80: 954–960CrossRefGoogle Scholar
  18. 18.
    Merkin JH (1994) Natural convection boundary-layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15: 392–398CrossRefGoogle Scholar
  19. 19.
    Salleh MZ, Nazar R, Pop I (2009) Forced convection boundary layer flow at a forward stagnation point with Newtonian heating. Chem Eng Commun 196: 987–996CrossRefGoogle Scholar
  20. 20.
    Lesnic D, Ingham DB, Pop I (1999) Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating. Int J Heat Mass Transf 42: 2621–2627MATHCrossRefGoogle Scholar
  21. 21.
    Lesnic D, Ingham DB, Pop I, Storr C (2004) Free convection boundary-layer flow above a nearly horizontal surface in a porous medium with Newtonian heating. Heat Mass Transf 40: 665–672CrossRefADSGoogle Scholar
  22. 22.
    Stewartson K (1955) On asymptotic expansions in the theory of boundary layers. J Math Phys 13: 113–122MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Z. Salleh
    • 1
  • R. Nazar
    • 2
  • N. M. Arifin
    • 3
  • I. Pop
    • 4
  • J. H. Merkin
    • 5
  1. 1.Faculty of Industrial Science & TechnologyUniversiti Malaysia Pahang (UMP)KuantanMalaysia
  2. 2.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
  3. 3.Department of MathematicsUniversiti Putra Malaysia (UPM)SerdangMalaysia
  4. 4.Faculty of MathematicsUniversity of ClujClujRomania
  5. 5.Department of Applied MathematicsUniversity of LeedsLeedsUK

Personalised recommendations