Journal of Engineering Mathematics

, Volume 69, Issue 1, pp 101–110

# Forced-convection heat transfer over a circular cylinder with Newtonian heating

• M. Z. Salleh
• R. Nazar
• N. M. Arifin
• I. Pop
• J. H. Merkin
Article

## Abstract

A mathematical model for the forced convection boundary-layer flow over a circular cylinder is considered when there is Newtonian heating on the surface of the cylinder through which the heat transfer is proportional to the local surface temperature. The dimensionless version of the boundary-layer equations involve two parameters, the Prandtl number σ and γ measuring the strength of the surface heating. The solution near the stagnation point is considered first and this reveals that, to get a physically acceptable solution, γ must be less than some critical value γ c , dependent on σ. Numerical solutions to the full boundary-layer problem are obtained which show that the surface temperature increases as the flow develops from the stagnation point.

### Keywords

Boundary-layer flow Circular cylinder Forced convection Newtonian heating Stagnation point flow

## Preview

### References

1. 1.
Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer, Berlin
2. 2.
Rosenhead, L (eds) (1963) Laminar boundary layers. Clarendon Press, Oxford
3. 3.
Blasius H (1908) Grenzschichten in Flüssigkeiten mit kleiner Reibung. Z Math Phys 56: 1–37Google Scholar
4. 4.
Hiemenz K (1911) Die Grenzschicht an einem in den gleichfömigen Flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers J 326: 321–324Google Scholar
5. 5.
Terrill RM (1960) Laminar boundary-layer flow near separation with and without suction. Philos Trans Roy Soc Lond A 253: 55–100
6. 6.
Goldstein S (1948) On laminar boundary-layer flow near a position of separation. Q J Mech Appl Math 1: 43–69
7. 7.
Stewartson K (1958) On the Goldstein theory of laminar separation. Q J Mech Appl Math 11: 399–410
8. 8.
Frössling N (1940) Verdungstung Wärmeübergang und Geschwindigkeitsverteilung bei zweidimensionaler und rotations symmetrischer laminarer Grenzschichtströmung. Lunds Univ Arsskr NF Avd 2 36(4)Google Scholar
9. 9.
Koh JCY (1964) Laminar free convection from a horizontal cylinder. In: Paper 76-HT-16 ASME-AIChE heat transfer conference, vol 7, pp 811–813Google Scholar
10. 10.
Saville DA, Churchill SW (1967) Laminar free convection in boundary layers near horizontal cylinders and vertical axisymmetric bodies. J Fluid Mech 29: 391–399
11. 11.
Elliott L (1970) Free convection on a two-dimensional or axisymmetric body. Q J Mech Appl Math 23: 153–162
12. 12.
Wilks G (1972) External natural convection about two-dimensional bodies with constant heat flux. Int J Heat Mass Transf 15: 351–354
13. 13.
Merkin JH, Pop I (1988) A note on the free convection boundary layer on a horizontal circular cylinder with constant heat flux. Wärme-und-Stoffübertragung 22: 79–81
14. 14.
Merkin JH (1977) Mixed convection from a horizontal circular cylinder. Int J Heat Mass Transf 20: 73–77
15. 15.
Pop I, Sunada JK, Cheng P, Minkowycz WJ (1985) Conjugate free convection from long vertical plate fins embedded in a porous medium. Int J Heat Mass Transf 28: 1629–1636
16. 16.
Pozzi A, Lupo M (1988) The coupling of conduction with laminar natural convection along a flat plate. Int J Heat Mass Transf 31: 1807–1814
17. 17.
Chaudhary RC, Jain P (2007) An exact solution to the unsteady free convection boundary-layer flow past an impulsively started vertical surface with Newtonian heating. J Eng Phys Thermophys 80: 954–960
18. 18.
Merkin JH (1994) Natural convection boundary-layer flow on a vertical surface with Newtonian heating. Int J Heat Fluid Flow 15: 392–398
19. 19.
Salleh MZ, Nazar R, Pop I (2009) Forced convection boundary layer flow at a forward stagnation point with Newtonian heating. Chem Eng Commun 196: 987–996
20. 20.
Lesnic D, Ingham DB, Pop I (1999) Free convection boundary layer flow along a vertical surface in a porous medium with Newtonian heating. Int J Heat Mass Transf 42: 2621–2627
21. 21.
Lesnic D, Ingham DB, Pop I, Storr C (2004) Free convection boundary-layer flow above a nearly horizontal surface in a porous medium with Newtonian heating. Heat Mass Transf 40: 665–672
22. 22.
Stewartson K (1955) On asymptotic expansions in the theory of boundary layers. J Math Phys 13: 113–122

## Authors and Affiliations

• M. Z. Salleh
• 1
• R. Nazar
• 2
• N. M. Arifin
• 3
• I. Pop
• 4
• J. H. Merkin
• 5
1. 1.Faculty of Industrial Science & TechnologyUniversiti Malaysia Pahang (UMP)KuantanMalaysia
2. 2.School of Mathematical Sciences, Faculty of Science and TechnologyUniversiti Kebangsaan Malaysia (UKM)BangiMalaysia
3. 3.Department of MathematicsUniversiti Putra Malaysia (UPM)SerdangMalaysia
4. 4.Faculty of MathematicsUniversity of ClujClujRomania
5. 5.Department of Applied MathematicsUniversity of LeedsLeedsUK