Journal of Engineering Mathematics

, Volume 66, Issue 1–3, pp 153–173 | Cite as

Computation of fluxes of conservation laws

Article

Abstract

The direct method for the construction of local conservation laws of partial differential equations (PDE) is a systematic method applicable to a wide class of PDE systems (S. Anco and G. Bluman, Eur J Appl Math 13:567–585, 2002). According to the direct method one seeks multipliers, such that the linear combination of PDEs of a given system with these multipliers yields a divergence expression. Once local-conservation-law multipliers have been found, one needs to reconstruct the fluxes of the conservation law. In this review paper, common methods of flux computation are discussed, compared, and illustrated by examples. An implementation of these methods in symbolic software is also presented.

Keywords

Conservation laws Direct construction method Multipliers Symbolic software 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math 21: 467–490MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Benjamin TB (1972) The stability of solitary waves. Proc R Soc Lond A 328: 153–183CrossRefMathSciNetADSGoogle Scholar
  3. 3.
    Knops RJ, Stuart CA (1984) Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity. Arch Ration Mech Anal 86: 234–249CrossRefMathSciNetGoogle Scholar
  4. 4.
    LeVeque RJ (1992) Numerical methods for conservation laws. Birkhäuser, BaselMATHGoogle Scholar
  5. 5.
    Godlewski E, Raviart P-A (1996) Numerical approximation of hyperbolic systems of conservation laws. Springer, BerlinMATHGoogle Scholar
  6. 6.
    Bluman G, Kumei S (1987) On invariance properties of the wave equation. J Math Phys 28: 307–318MATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    Bluman G, Kumei S, Reid G (1988) New classes of symmetries for partial differential equations. J Math Phys 29: 806–811MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    Bluman G, Cheviakov AF (2005) Framework for potential systems and nonlocal symmetries: algorithmic approach. J Math Phys 46: 123506CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Bluman G, Cheviakov AF, Ivanova NM (2006) Framework for nonlocally related PDE systems and nonlocal symmetries: extension simplification and examples. J Math Phys 47: 113505CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    Sjöberg A, Mahomed FM (2004) Non-local symmetries and conservation laws for one-dimensional gas dynamics equations. Appl Math Comput 150: 379–397MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Akhatov S, Gazizov R, Ibragimov N (1991) Nonlocal symmetries. Heuristic approach. J Sov Math 55: 1401–1450CrossRefGoogle Scholar
  12. 12.
    Anco SC, Bluman GW, Wolf T (2008) Invertible mappings of nonlinear PDEs to linear PDEs through admitted conservation laws. Acta Appl Math 101: 21–38MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Noether E (1918) Invariante Variationsprobleme. Nachr König Gesell Wissen Göttingen, Math-Phys Kl 235–257Google Scholar
  14. 14.
    Bluman G (2005) Connections between symmetries and conservation laws. Symm Integr Geom: Meth Appl (SIGMA) 1:011, 16 pagesGoogle Scholar
  15. 15.
    Wolf T (2002) A comparison of four approaches to the calculation of conservation laws. Eur J Appl Math 13(2): 129–152MATHCrossRefGoogle Scholar
  16. 16.
    Anco S, Bluman G (1997) Direct construction of conservation laws. Phys Rev Lett 78: 2869–2873MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    Anco S, Bluman G (2002) Direct construction method for conservation laws of partial differential equations Part II: general treatment. Eur J Appl Math 13: 567–585MATHMathSciNetGoogle Scholar
  18. 18.
    Bluman G, Cheviakov AF, Anco S (2009) Construction of conservation laws: how the direct method generalizes Noether’s theorem. In: Proceedings of 4th workshop group analysis of differential equations & integrability (to appear)Google Scholar
  19. 19.
    Hereman W, Colagrosso M, Sayers R, Ringler A, Deconinck B, Nivala M, Hickman MS (2005) Continuous and discrete homotopy operators and the computation of conservation laws. In: Wang D, Zheng Z (eds) Differential equations with symbolic computation. Birkhäuser Verlag, Boston, pp 249–285Google Scholar
  20. 20.
    Anco S (2003) Conservation laws of scaling-invariant field equations. J Phys A: Math Gen 36: 8623–8638MATHCrossRefMathSciNetADSGoogle Scholar
  21. 21.
    Bluman GW, Cheviakov AF, Anco SC (2009) Advanced symmetry methods for partial differential equations. Appl Math Sci ser (to appear)Google Scholar
  22. 22.
    Cheviakov AF (2007) GeM software package for computation of symmetries and conservation laws of differential equations. Comput Phys Commun 176(1):48–61. (In the current paper, we used a new version of GeM software, which is scheduled for public release in 2009. See http://math.usask.ca/~cheviakov/gem/)Google Scholar
  23. 23.
    Wolf T (2002) Crack, LiePDE, ApplySym and ConLaw, section 4.3.5 and computer program on CD-ROM. In: Grabmeier J, Kaltofen E, Weispfenning V (eds) Computer algebra handbook. Springer, Berlin, pp 465–468Google Scholar
  24. 24.
    Hereman W, TransPDEDensityFlux.m, PDEMultiDimDensityFlux.m, and DDEDensityFlux.m: Mathematica packages for the symbolic computation of conservation laws of partial differential equations and differential-difference equations. Available from the software section at http://www.mines.edu/fs_home/whereman/
  25. 25.
    Deconinck B, Nivala M (2008) Symbolic integration using homotopy methods. Preprint, Department of Applied Mathematics, University of Washington, Seattle, WA 98195-2420. Math Comput Simul (in press)Google Scholar
  26. 26.
    Deconinck B, Nivala M Maple software for the symbolic computation of conservation laws of (1 + 1)-dimensional partial differential equations. http://www.amath.washington.edu/~bernard/papers.html
  27. 27.
    Olver PJ (1983) Conservation laws and null divergences. Math Proc Camb Phil Soc 94: 529–540MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Oberlack M, Wenzel H, Peters N (2001) On symmetries and averaging of the G-equation for premixed combustion. Combust Theor Model 5: 363–383MATHCrossRefMathSciNetADSGoogle Scholar
  29. 29.
    Oberlack M, Cheviakov AF (2009) Higher-order symmetries and conservation laws of the G-equation for premixed combustion and resulting numerical schemes. J Eng Math (Submitted)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations