Journal of Engineering Mathematics

, Volume 64, Issue 4, pp 403–415 | Cite as

Coupled autoregulation models in the cerebro-vasculature

Article

Abstract

A non-dimensional representation of both myogenic and metabolic autoregulation coupled with an asymmetric binary tree algorithm simulating the cerebro-vasculature has been developed. Results are presented for an autoregulation algorithm of the cerebro-vasculature downstream of the efferent arteries, in this case the middle cerebral artery. These results indicate that, due to the low pressures found in the arteriolar structure, the myogenic mechanism based on the increased open probability due to pressure of stretched activated ion channels does not provide enough variation in the vascular resistance to support constancy of blood flow to the cerebral tissue under variable perfusion pressure. A metabolic model has been developed under the assumption of close proximity between venules and the vascular tree at the arteriolar level. This allows carbon dioxide to diffuse between arterioles and the venous bed causing either a relaxation or contraction of the nearby arteriolar bed. Results show that the metabolic mechanism seems to be the dominant mechanism for cerebral autoregulation.

Keywords

Autoregulation Blood flow Cerebro-vasculature Differential equations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ursino M, Giulioni M (2003) Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study. Med Eng Phys 25(8): 655–666CrossRefGoogle Scholar
  2. 2.
    Ursino M (1991) A mathematical-model of overall cerebral blood-flow regulation in the rat. IEEE Trans Biomed Eng 38(8): 795–807CrossRefGoogle Scholar
  3. 3.
    Olufsen MS, Nadim A, Lipsitz LA (2002) Dynamics of cerebral blood flow regulation explained using a lumped parameter model. Am J Physiol Regul Integr Comp Physiol 282(2): R611–R622Google Scholar
  4. 4.
    Moore S, David T, Chase JG, Arnold J, Fink J (2006) 3D models of blood flow in the cerebral vasculature. J Biomech 39(8): 1454–1463CrossRefGoogle Scholar
  5. 5.
    Moore S, David T (2006) Auto-regulated blood flow in the cerebral-vasculature. J Biomech Sci Eng (JSME) 1(1): 1–14Google Scholar
  6. 6.
    Moore S, Moorhead K, Chase J, David T, Fink J (2005) One-dimensional and three-dimensional models of cerebrovascular flow. J Biomech Eng 127: 440–449CrossRefGoogle Scholar
  7. 7.
    Moorhead K, Doran CV, Chase JG, David T (2004) Lumped parameter and feedback control models of the auto-regulatory response in the circle of Willis. Comput Methods Biomech Biomed Eng 7(3): 121–130CrossRefGoogle Scholar
  8. 8.
    Moorhead KT, Chase JG, David T, Arnold J (2006) Metabolic model for autoregulation in the circle of Willis. J Biomech Eng 128(3): 462–466CrossRefGoogle Scholar
  9. 9.
    Moorhead K, Moore S, Chase JG, David T, Fink J (2005) Impact of decentralised control in cerebral blood flow auto-regulation using 1D and 3D models. Int J Intell Syst, Technol Appl 1(1/2): 95–110Google Scholar
  10. 10.
    Ferrandez A (2001) Computational models of blood flow in the circle of Willis. PhD, University of LeedsGoogle Scholar
  11. 11.
    David T, Brown M, Ferrandez A (2003) Auto-regulation and blood flow in the cerebral circulation. Int J Numer Methods Fluids 43: 701–713MATHCrossRefGoogle Scholar
  12. 12.
    Haga J, Li Y-SJ, Chien S (2007) Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells. J Biomech 40: 947–960CrossRefGoogle Scholar
  13. 13.
    Harder D (1984) Pressure-dependent membrane polarisation in cat middle cerebral artery. Circ Res 55: 197–202Google Scholar
  14. 14.
    Harder D (1987) Pressure induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60: 102–107ADSGoogle Scholar
  15. 15.
    Harder D, Roman R, Gebremedhin D (2000) Molecular mechanisms controlling nutrtive blood flow: role of cytochrome P450 enzymes. Acta Physiol Scand 168(4): 543–549CrossRefGoogle Scholar
  16. 16.
    Banaji M, Tachtsidis A, Delpy D, Baigent S (2005) A physiological model of cerebral blood flow control. Math Biosci 194(2): 125–173MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gonzalez-Ferrandez J, Ermentrout B (1994) On the origin and dynamics of the vasomotion of small arteries. Math Biosci 119: 127–167CrossRefGoogle Scholar
  18. 18.
    Olufsen MS, Steele M, Taylor C (2007) Fractal network model for simulating abdominal and lower extremity blood flow during reesting and exercise conditions. Comput Methods Biomech Biomed Eng 10: 39–51Google Scholar
  19. 19.
    Wiesner T, Berk B, Nerem R (1997) A mathematical model of ctosolic-free calcium response in endothelial cells to fluid shear stress. Proc Natl Acad Sci 94: 3726–3731CrossRefADSGoogle Scholar
  20. 20.
    Comerford A, Plank M, David T (2008) Endothelial nitric oxide synthase and calcium production in arterial geometries: an integrated fluid mechanics/cell model. J Biomech Eng 130: 011010-1–011010-13CrossRefGoogle Scholar
  21. 21.
    Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399: 601–605CrossRefADSGoogle Scholar
  22. 22.
    van Riper D, McDaniel N, Rembold C (1997) Myocin light chain kinase phosphorylation in nitrovasodilator induced swine carotid artery relaxation. Biochem Biophys Acta Mol Cell Res 1355: 323–330CrossRefGoogle Scholar
  23. 23.
    Murphy R (1980) Mechanics of vascular smooth muscle. Handbook of physiology vol II. Waverley Press, BaltimoreGoogle Scholar
  24. 24.
    Burton A (1954) Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34: 619Google Scholar
  25. 25.
    Edvinsson L (2002) Cerebral blood flow and metabolism. Lippincott Williams and Wilkins, PhiladelphiaGoogle Scholar
  26. 26.
    Thoman WJ, Lampotang S, Gravenstein D, van der Aa (1998) A computer model of intracranial dynamics integrated to a full-scale patient simulator. J Comput Biomed Res 31(1): 32–46CrossRefGoogle Scholar
  27. 27.
    Halsey JH, McFarland S (1974) Oxygen cycles and metabolic autoregulation. Stroke 5: 219–225Google Scholar
  28. 28.
    Alastruey J, Moore S, Parker K, Peiro J, David T, Sherwin S (2007) Reduced modelling of blood flow in the cerebral circulation: coupling 1-D, 0-D and cerebral auto-regulation models. Int J Num Methods Fluids (in press)Google Scholar
  29. 29.
    Lauwers F, Cassot F, Lauwers-Cances V, Puwanarajah P, Duvernoy H (2008) Morphometry of the human cerebral cortex microcirculation: General characteristics and space-related profiles. NeuroImage 39: 936–948CrossRefGoogle Scholar
  30. 30.
    Pries A, Secomb T (2005) Microvascular blood viscosity in vivo and the endothelial surface layer. Am Heart J - Heart Cir Phys 289: H2657–H2664CrossRefGoogle Scholar
  31. 31.
    Krogh A (1919) The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J Physiol 52: 409–515Google Scholar
  32. 32.
    Bloch I (1943) Some theoretical considerations concerning the interchange of metabolite between capillaries and tissue. Bull Math Biophys 5: 1–14CrossRefGoogle Scholar
  33. 33.
    Blum J (1960) Concentration profiles in and around capillaries. Am J Physiol 198(5): 991–998Google Scholar
  34. 34.
    McGuire BJ, Secomb TW (2001) A theoretical model for oxygen transport in skeletal muscle under conditions of high oxygen demand. J Appl Physiol 91: 2255–2265Google Scholar
  35. 35.
    Shampine LF, Reichelt MW (1997) The MATLAB ODE Suite. SIAM J Sci Comput 18: 1–22MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Lipowsky H, Zweifach B (1978) The distribution of blood rheological parameters in the microvasculature of the cat mesentary. Circ Res 43: 738–749Google Scholar
  37. 37.
    Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral flow. Nat Neurosci 9: 260–267CrossRefGoogle Scholar
  38. 38.
    Filosa J, Blanco V (2007) Neurovascular coupling in the mammalian brain. Exp Physiol 92: 641–646CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Center for BioengineeringUniversity of CanterburyChristchurchNew Zealand

Personalised recommendations