Advertisement

Journal of Engineering Mathematics

, Volume 59, Issue 4, pp 351–358 | Cite as

A brief historical perspective of the Wiener–Hopf technique

  • Jane B. Lawrie
  • I. David Abrahams
Article

Abstract

It is a little over 75 years since two of the most important mathematicians of the 20th century collaborated on finding the exact solution of a particular equation with semi-infinite convolution type integral operator. The elegance and analytical sophistication of the method, now called the Wiener–Hopf technique, impress all who use it. Its applicability to almost all branches of engineering, mathematical physics and applied mathematics is borne out by the many thousands of papers published on the subject since its conception. The Wiener–Hopf technique remains an extremely important tool for modern scientists, and the areas of application continue to broaden. This special issue of the Journal of Engineering Mathematics is dedicated to the work of Wiener and Hopf, and includes a number of articles which demonstrate the relevance of the technique to a representative range of model problems.

Keywords

Eberhard Hopf Norbert Wiener Wiener filter Wiener–Hopf technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    http://www.en.wikipedia.org/wiki/Norbert_Wiener (Accessed on 24 September 2007)
  2. 2.
    Wiener N (1956). I am a Mathematician. Doubleday & Co., Inc. zbMATHGoogle Scholar
  3. 3.
    Wiener N and Hopf E (1931). Über eine klasse singulärer integralgleichungen. Sem–Ber Preuss Akad Wiss 31: 696–706 Google Scholar
  4. 4.
    Noble B (1988). Methods based on the Wiener–Hopf Technique, 2nd edn. Chelsea Publishing Company, New York zbMATHGoogle Scholar
  5. 5.
    Carrier GF, Krook M and Pearson CE (2005). Functions of a complex variable. SIAM Publishing, Philadelphia zbMATHGoogle Scholar
  6. 6.
    Muskhelishvili NI (1953). Singular integral equations, Translated from second edition Moscow (1946) by J.R.M. Radok. Noordhoff, Groningen Google Scholar
  7. 7.
    Hopf E (1934). Mathematical problems of radiative equilibrium. Cambridge Tract 31, Cambridge University Press, Cambridge Google Scholar
  8. 8.
  9. 9.
    Sommerfeld A (1896). Mathematische theorie der diffraction. Math Ann 47: 317–374 CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Copson ET (1946). On an integral equation arising in the theory of diffraction. Quart J Math 17: 19–34 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Carlson JF and Heins AE (1947). The reflection of an electromagnetic plane wave by an infinite set of plates, I. Quart Appl Math 4: 313–329 zbMATHMathSciNetGoogle Scholar
  12. 12.
    Carlson JF and Heins AE (1947). The reflection of an electromagnetic plane wave by an infinite set of plates, II. Quart Appl Math 5: 82–88 zbMATHMathSciNetGoogle Scholar
  13. 13.
    Levine H and Schwinger J (1948). On the radiation of sound from an unflanged circular pipe. Phys Rev 73: 383–406 zbMATHCrossRefADSMathSciNetGoogle Scholar
  14. 14.
    Jones DS (1952). A simplifying technique in the solution of a class of diffraction problems. Quart J Math 3: 189–196 zbMATHCrossRefGoogle Scholar
  15. 15.
  16. 16.
    Heins AE (1950) Systems of Wiener–Hopf equations. In: Proceedings of Symposia in Applied Mathematics II. McGraw-Hill, pp 76–81Google Scholar
  17. 17.
    Khrapkov AA (1971). Certain cases of the elastic equilibrium of an infinite wedge with a non-symmetric notch at the vertex, subjected to concentrated forces. Appl Math Mech (PMM) 35: 625–637 zbMATHCrossRefGoogle Scholar
  18. 18.
    Khrapkov AA (1971). Closed form solutions of problems on the elastic equilibrium of an infinite wedge with nonsymmetric notch at the apex. Appl Math Mech (PMM) 35: 1009–1016 zbMATHCrossRefGoogle Scholar
  19. 19.
    Daniele VG (1978). On the factorization of Wiener-Hopf matrices in problems solvable with Hurd’s method. IEEE Trans Antennas Propagat 26: 614–616 CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Rawlins AD (1975). The solution of a mixed boundary value problem in the theory of diffraction by a semi-infinite plane. Proc Roy Soc London A 346: 469–484 zbMATHADSMathSciNetGoogle Scholar
  21. 21.
    Rawlins AD (1985). A note on Wiener-Hopf matrix factorization. Quart J Mech Appl Math 38: 433–437 zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Idemen M (1979). A new method to obtain exact solutions of vector Wiener–Hopf equations. Zeit Angew Math Mech 59: 656–658 zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hurd RA (1976). The Wiener–Hopf Hilbert method for diffraction problems. Canad J Phys 54: 775–780 zbMATHADSMathSciNetGoogle Scholar
  24. 24.
    Rawlins AD and Williams WE (1981). Matrix Wiener–Hopf factorization. Quart J Mech Appl Math 34: 1–8 zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Williams WE (1984). Recognition of some readily “Wiener–Hopf” factorizable matrices. IMA J Appl Math 32: 367–378 zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Jones DS (1984). Commutative Wiener–Hopf factorization of a matrix. Proc Roy Soc Lond A 393: 185–192 zbMATHADSGoogle Scholar
  27. 27.
    Jones DS (1984). Factorization of a Wiener–Hopf matrix. IMA J Appl Math 32: 211–220 zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Veitch BH and Abrahams ID (2007). On the commutative factorization of n  ×  n matrix Wiener–Hopf kernels with distinct eigenvalues. Proc Roy Soc London A 463: 613–639 MathSciNetzbMATHADSGoogle Scholar
  29. 29.
    Abrahams ID (1997). On the solution of Wiener-Hopf problems involving noncommutative matrix kernel decompositions. SIAM J Appl Math 57: 541–567 zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Koiter WT (1954). Approximate solution of Wiener–Hopf type integral equations with applications, parts I–III. Koninkl Ned Akad Wetenschap Proc B 57: 558–579 MathSciNetGoogle Scholar
  31. 31.
    Carrier GF (1959). Useful approximations in Wiener–Hopf problems. J Appl Phys 30: 1769–1774 CrossRefADSzbMATHGoogle Scholar
  32. 32.
    Kranzer HC and Radlow J (1962). Asymptotic factorization for perturbed Wiener–Hopf problems. J Math Anal Appl 4: 240–256 zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Kranzer HC and Radlow J (1965). An asymptotic method for solving perturbed Wiener–Hopf problems. J Math Mech 14: 41–59 zbMATHMathSciNetGoogle Scholar
  34. 34.
    Crighton DG (2001). Asymptotic factorization of Wiener–Hopf kernels. Wave Motion 33: 51–65 zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Abrahams ID and Wickham GR (1990). General Wiener–Hopf factorization of matrix kernels with exponential phase factors. SIAM J Appl Math 50: 819–838 zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Abrahams ID (2000). The application of Padé approximants to Wiener–Hopf factorization. IMA J Appl Math 65: 257–281 zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Abrahams ID (1996). Radiation and scattering of waves on an elastic half-space; a noncommutative matrix Wiener–Hopf problem. J Mech Phys Solids 44: 2125–2154 CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Abrahams ID (2002). On the application of the Wiener–Hopf technique to problems in dynamic elasticity. Wave Motion 36: 311–333 zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Jones DS (1952). Diffraction by a waveguide of finite length. Proc Camb Phil Soc 48: 118–134 zbMATHGoogle Scholar
  40. 40.
    Owen GW and Abrahams ID (2006). Elastic wave radiation from a high frequency finite-length transducer. J Sound Vib 298: 108–131 CrossRefADSGoogle Scholar
  41. 41.
    Lawrie JB and Guled IMM (2006). On tuning a reactive silencer by vaying the position of an internal membrane. J Acoust Soc Amer 120: 780–790 CrossRefADSGoogle Scholar
  42. 42.
    Maliuzhinets GD (1958). Excitation, reflection and emission of surface waves from a wedge with given face impedances. Soviet Phys Doklady 3: 752–755 ADSGoogle Scholar
  43. 43.
    Williams WE (1959). Diffraction of an E-polarized plane wave by an imperfectly conducting wedge. Proc R Soc Lond A 252: 376–393 zbMATHADSGoogle Scholar
  44. 44.
    Abrahams ID and Lawrie JB (1995). On the factorization of a class of Wiener–Hopf kernels. IMA J Appl Math 55: 35–47 zbMATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Daniele VG (2003). The Wiener–Hopf technique for impenetrable wedges having arbitrary aperture angle. SIAM J Appl Math 63: 1442–1460 zbMATHCrossRefMathSciNetGoogle Scholar
  46. 46.
    Daniele VG and Lombardi G (2006). Wiener–Hopf Solution for impenetrable wedges at skew incidence. IEEE Trans Antenn Prop 54: 2472–2485 CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    Osipov AV and Norris AN (1999). The Malyuzhinets theory for scattering from wedge boundaries: a review. Wave Motion 29: 313–340 zbMATHCrossRefMathSciNetGoogle Scholar
  48. 48.
    Budaev B (1995). Diffraction by wedges. Longman Scientific, London zbMATHGoogle Scholar
  49. 49.
    Bernard JML (1998). Diffraction at skew incidence by an anisotropic impedance wedge in electromagnetism theory; a new class of canonical cases. J Phys A: Math Gen 31: 595–613 zbMATHCrossRefADSMathSciNetGoogle Scholar
  50. 50.
    Osipov AV (2004) A hybrid technique for the analysis of scattering by impedance wedges. In: Proceedings of URSI Int Symp Electromagn Theory Pisa, Vol. 2, pp. 1140–1142Google Scholar
  51. 51.
    Lyalinov MA and Zhu NY (2003). Exact solution to diffraction problem by wedges with a class of anisotropic impedance faces: oblique incidence of a plane electromagnetic wave. IEEE Trans Antennas Propag 51: 1216–1220 CrossRefADSGoogle Scholar
  52. 52.
    Abrahams ID and Lawrie JB (1995). Travelling waves on a membrane: reflection and transmission at a corner of arbitrary angle, I. Proc R Soc London A 451: 657–683 zbMATHADSCrossRefGoogle Scholar
  53. 53.
    Osipov AV (1996). Diffraction by a wedge with higher-order boundary conditions. Radio Sci 31: 1705–1720 CrossRefADSGoogle Scholar
  54. 54.
    Norris AN and Osipov AV (1997). Structural and acoustical wave interaction at a wedge-shaped junction of fluid-loaded plates. J Acoust Soc Amer 101: 867–876 CrossRefADSGoogle Scholar
  55. 55.
    Smyshlyaev VP (1993). The high-frequency diffraction of electromagnetic waves by cones of arbitrary cross sections. SIAM J Appl Math 53: 670–688 zbMATHCrossRefADSMathSciNetGoogle Scholar
  56. 56.
    Babich VM, Dement’ev DB, Samokish BA and Smyshlyaev VP (2000). On evaluation of the diffraction coefficients for arbitrary ‘nonsingular’ directions of a smooth convex cone. SIAM J Appl Math 60: 536–573 zbMATHCrossRefMathSciNetGoogle Scholar
  57. 57.
    Jones DS (1997). Scattering by a cone. Q Jl Mech Appl Math 50: 499–523 zbMATHCrossRefGoogle Scholar
  58. 58.
    Bernard JML and Lyalinov MA (2001). Spectral domain solution and asymptotics for the diffraction by an impedance cone. IEEE Trans Antennas Propagat 49: 1633–1637 zbMATHCrossRefMathSciNetADSGoogle Scholar
  59. 59.
    Antipov YA (2002). Diffraction of a plane wave by a circular cone with an impedance boundary condition. SIAM J Appl Math 62: 1122–1152 zbMATHCrossRefMathSciNetGoogle Scholar
  60. 60.
    Kuiken HK (1985). Edge effects in crystal growth under intermediate diffusive-kinetic control. IMA J Appl Math 35: 117–129 zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Boersma J (1978). Note on an integral equation of viscous flow theory. J Eng Math 12: 237–243 zbMATHMathSciNetGoogle Scholar
  62. 62.
    Boersma J, Indenkleef JJE and Kuiken HK (1984). A diffusion problem in semconductor technology. J Eng Math 18: 315–333 CrossRefMathSciNetGoogle Scholar
  63. 63.
    Mysak LA and LeBlond PH (1972). The scattering of Rossby waves by a semi-infinite barrier. J Phys Oceanogr 2: 108–114 CrossRefADSGoogle Scholar
  64. 64.
    Levinson N (1966). Norbert Wiener. Bull Amer Math Soc 72: 1–32 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBrunel UniversityUxbridgeUK
  2. 2.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations