Journal of Engineering Mathematics

, Volume 59, Issue 4, pp 419–435 | Cite as

Wave propagation in a bifurcated impedance-lined cylindrical waveguide

  • Anthony D. RawlinsEmail author


The radiation of a cylindrical-surface-wave mode which propagates towards the mouth of a semi- infinite cylindrical waveguide which supports surface waves is considered. This semi-infinite cylindrical waveguide is symmetrically located inside an infinite cylindrical waveguide whose surfaces are lined with an absorbent material. The whole system constitutes a new bifurcated cylindrical-waveguide boundary-value problem that has application in acoustics and electromagnetism. The mathematical model results in a scalar Wiener–Hopf problem which can be rigorously solved to give a closed-form solution.


Cylindrically lined ducts Diffraction Lined waveguides Wiener–Hopf technique 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mahmoud SF (1991) Electromagnetic waveguides theory and practice. Peter Peregrinus LtdGoogle Scholar
  2. 2.
    Barlow HM, Brown J (1962) Radio surface waves. Oxford University pressGoogle Scholar
  3. 3.
    Hecht J (1990) Understanding Fiber optics. Prentice HallGoogle Scholar
  4. 4.
    Snyder AW, Love JD (1983) Optical waveguide theory. Chapman and HallGoogle Scholar
  5. 5.
    Morse PM (1939). The transmission of sound inside pipes. J Acoust Soc Am 11(3): 205–210 CrossRefGoogle Scholar
  6. 6.
    Cremer L (1953). Theorie der Luftschall-Dämpfung im Rechteckkanal mit schluckender Wand und das sich dabei ergebende höchste Dämpfungsmaß. Acoustica 3: 249–263 Google Scholar
  7. 7.
    Nayfeh LJ, Kaiser E and Telionis Dp (1975). Acoustics of aircraft engine duct systems. AJAA J 13: 130–153 zbMATHGoogle Scholar
  8. 8.
    Lapin AD (1975). Sound attenuation in waveguides (Review). Soviet P Acous 21: 215–222 Google Scholar
  9. 9.
    Büyükaksoy A and Demir A (2006). Radiation of sound from a semi-infinite rigid duct inserted axially into a larger infinite tube with in a cylindrical duct with wall impedance discontinuity. ZAMM 86: 563–571 zbMATHCrossRefGoogle Scholar
  10. 10.
    Rienstra SW (1992). Acoustical detection of obstructions in a pipe with a temperature gradient. In: Simonis, J. (eds) Engineering mathematics modeling and methods, pp 151–179. Kluwer, Dordrecht Holland Google Scholar
  11. 11.
    Morse PM, Ingard K (1961) Linear acoustics theory. In: Flügge KHandbuch der Physiks, Akustik I. Springer, Berlin, Germany, pp 1–128Google Scholar
  12. 12.
    Rienstra SW and Hirschberg A (1992). An introduction to Acoustics. Instituut Wiskundige Dienst. [11, pp 151 – 179]. Kluwer, Dordrecht, Holland Google Scholar
  13. 13.
    Brekhovskikh L (1980). Waves in layered media, 2nd edn. Academic Press, New York zbMATHGoogle Scholar
  14. 14.
    Rawlins AD (1995). A bifurcated circular waveguide problem. IMA J Appl Math 54: 59–81 zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Noble B (1958) The Wiener–Hopf techique. PergamonGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBrunel UniversityUxbridgeUK

Personalised recommendations