Advertisement

Numerical gradient methods for flux identification in a system of conservation laws

  • François James
  • Marie Postel
Article

Abstract

The identification of the flux for a system of conservation laws is studied from a numerical point of view, on the specific example of chromatography. Different strategies to compute the exact gradient of the discretized optimization problem are developed and compared. Numerical evidence of the convergence of the method is also given in the scalar and binary case. Finally a ternary mixture with real experimental data is studied and the identified isotherm is compared with results obtained by chemical engineers.

Keywords

Chromatography Discrete gradient method Flux identification Hyperbolic systems of conservation laws Measure-valued solutions 

References

  1. 1.
    Guiochon G, Golshan Shirazi S and Katti A (1994). Fundamentals of preparative and nonlinear chromatography. Academic Press, Boston Google Scholar
  2. 2.
    Guiochon G, Feilinger A, Golshan Shirazi S and Katti A (2006). Fundamentals of preparative and nonlinear chromatography. Academic Press, Boston Google Scholar
  3. 3.
    Langmuir I (1916). The constitution and fundamental properties of solids and liquids. part I Solids. J Am Chem Soc 38: 2221–2295 CrossRefGoogle Scholar
  4. 4.
    Langmuir I (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40(9): 1361–1403 CrossRefGoogle Scholar
  5. 5.
    Quiñones I, Ford JC and Guiochon G (2000). High concentration band profiles and system peaks for a ternary solute system. Anal Chem 72: 1495–1502 CrossRefGoogle Scholar
  6. 6.
    James F, Sepúlveda M, Quiñones I, Charton F and Guiochon G (1999). Determination of binary competitive equilibrium isotherms from the individual chromatographic band profiles. Chem Eng Sci 54(11): 1677–1696 CrossRefGoogle Scholar
  7. 7.
    Fadda A, Schoenauer M (1995) Evolutionary chromatographic law identification by recurrent neural nets. In: EP95editors (ed) EP95, MIT Press, March, pp 219–235Google Scholar
  8. 8.
    Eiben AE, Schoenauer M (eds) (2002) Special issue on evolutionary computing. Elsevier Science Publishers B.V., Amsterdam, Inform Process Lett 82:1Google Scholar
  9. 9.
    Godlewski E and Raviart PA (1996). Numerical approximation of hyperbolic systems of conservation laws, Vol. 118 of Applied Mathematical Sciences. Springer Verlag, New-York, USA Google Scholar
  10. 10.
    Lucier B (1986). A moving mesh numerical method for hyperbolic conservation laws. Math Comp 173: 59–69 CrossRefMathSciNetGoogle Scholar
  11. 11.
    Bouchut F and Perthame B (1998). Kružkov’s estimates for scalar conservation laws revisited. Trans Am Math Soc 350(7): 2847–2870 zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Evje S, Karlsen KH, Risebro NH (2001) A continuous dependence result for nonlinear degenerate parabolic equations with spatially dependent flux function. In: Freistühler H, Warnecke G (eds) Hyperbolic problems: theory, numerics, applications, Vol. 140 of Internat Ser Numer Math Birkhäuser, pp 337–346Google Scholar
  13. 13.
    Ambrosio L (2004). Transport equation and Cauchy problem for BV vector fields. Invent Math 158(2): 227–260 zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    Bouchut F, James F and Mancini S (2005). Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficients. Ann Scuola Norm Sup Pisa Cl Sci (5) IV: 1–25 MathSciNetGoogle Scholar
  15. 15.
    DiPerna RJ and Lions P-L (1989). Ordinary differential equations, transport theory and Sobolev spaces. Invent Math 98: 511–547 zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Bouchut F and James F (1998). One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal TMA 32(7): 891–933 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Poupaud F and Rascle M (1997). Measure solutions to the linear multidimensional transport equation with discontinuous coefficients. Comm Partial Diff Eq 22: 337–358 zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Bouchut F, James F (1999) Differentiability with respect to the initial data for a scalar conservation law. In: Hyperbolic problems: theory, numerics, applications, Vol. I (Zürich, 1998), volume 129 of Internat Ser Numer Math Birkhäuser, Basel, pp 113–118Google Scholar
  19. 19.
    Gosse L and James F (2000). Numerical approximations of one-dimensional linear conservation equations with discontinuous coefficients. Math Comp 69: 987–1015 zbMATHCrossRefADSMathSciNetGoogle Scholar
  20. 20.
    Sepúlveda M (1993) Identification de paramètres pour un système hyperbolique. application à l’estimation des isothermes en chromatographie. Thèse de doctorat, Ecole Polytechnique, FranceGoogle Scholar
  21. 21.
    James F and Sepúlveda M (1994). Parameter identification for a model of chromatographic column. Inverse Problems 10(6): 1299–1314 zbMATHCrossRefADSMathSciNetGoogle Scholar
  22. 22.
    James F and Sepúlveda M (1999). Convergence results for the flux identification in a scalar conservation law. SIAM J Control Opt 37(3): 869–891 zbMATHCrossRefGoogle Scholar
  23. 23.
    Bardos C and Pironneau O (2002). A formalism for the differentiation of conservation laws. C R Math Acad Sci Paris 335(10): 839–845 zbMATHMathSciNetGoogle Scholar
  24. 24.
    Pironneau O and Polak E (2002). Consistent approximations and approximate functions and gradients in optimal control. SIAM J Control Optim 41(2): 487–510 (electronic)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Bernardi Ch and Pironneau O (2002). Derivative with respect to discontinuities in the porosity. C R Math Acad Sci Paris 335(7): 661–666 zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.Mathématiques, Applications et Physique Mathématique d’Orléans, CNRS UMR 6628, Fédération Denis Poisson, CNRS FR 2964Université d’OrléansOrléans Cedex 2France
  2. 2.Laboratoire Jacques-Louis Lions, CNRS UMR 7598Université Pierre et Marie Curie, BC 187Paris Cedex 05France

Personalised recommendations