Journal of Engineering Mathematics

, Volume 61, Issue 1, pp 69–79

Fundamental solutions for micropolar fluids

Article

Abstract

New fundamental solutions for micropolar fluids are derived in explicit form for two- and three-dimensional steady unbounded Stokes and Oseen flows due to a point force and a point couple, including the two-dimensional micropolar Stokeslet, the two- and three-dimensional micropolar Stokes couplet, the three-dimensional micropolar Oseenlet, and the three-dimensional micropolar Oseen couplet. These fundamental solutions do not exist in Newtonian flow due to the absence of microrotation velocity field. The flow due to these singularities is useful for understanding and studying microscale flows. As an application, the drag coefficients for a solid sphere or a circular cylinder that translates in a low-Reynolds-number micropolar flow are determined and compared with those corresponding to Newtonian flow. The drag coefficients in a micropolar fluid are greater than those in a Newtonian fluid.

Keywords

Micropolar fluids Fundamental solutions Oseen flow Point couple Point force Stokes flow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Papautsky I, Brazzle J, Ameel T and Frazier AB (1999). Laminar fluid behavior in microchannels using micropolar fluid theory. Sensors Actuators A Physical 73(1–2): 101–108 CrossRefGoogle Scholar
  2. 2.
    Shu J-J (2004). Microscale heat transfer in a free jet against a plane surface. Superlattices Microstruct 35(3–6): 645–656 CrossRefADSGoogle Scholar
  3. 3.
    Eringen AC (2001). Microcontinuum field theories II: fluent Media. Springer-Verlag, New York, Inc MATHGoogle Scholar
  4. 4.
    Stokes GG (1851). On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9(II): 8–106 Google Scholar
  5. 5.
    Oseen CW (1910). Über die Stokes’sche formel und über eine verwandte aufgabe in der hydrodynamik. Arkiv för Matematik 6(29): 1–20 Google Scholar
  6. 6.
    Lorentz HA (1986) Eene algemeene stelling omtrent de beweging eener vloeistof met wrijving en eenige daaruit afgeleide gevolgen. Zittingsverslag van de Koninklijke Akademie van Wetenschappen te Amsterdam 5:168–175 (in Dutch). Translated into English by Kuiken, HK (1996) A general theorem on the motion of a fluid with friction and a few results derived from it. J Eng Math 30:19–24Google Scholar
  7. 7.
    Hancock GJ (1953). The self-propulsion of microscopic organisms through liquids. Proc Roy Soc Lond Ser A Math Phys Sci 217(1128): 96–121 MATHADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    Ladyzhenskaya OA (1961) Mathematical problems of the dynamics for viscous incompressible fluids (Fizmatgiz) (in Russian). English translation, by Gordon and Breach (1963) The mathematical theory of viscous incompressible flowGoogle Scholar
  9. 9.
    Kuiken HK (1996). H.A. Lorentz: Sketches of his work on slow viscous flow and some other areas in fluid mechanics and the background against which it arose. J Eng Math 30(1–2): 1–18 MATHMathSciNetGoogle Scholar
  10. 10.
    Shu J-J and Chwang AT (2001). Generalized fundamental solutions for unsteady viscous flows. Phys Rev E 63(5): 051201 CrossRefADSGoogle Scholar
  11. 11.
    Ramkissoon H and Majumdar SR (1976). Drag on an axially symmetric body in the Stokes’ flow of micropolar fluid. Phys Fluids 19(1): 16–21 MATHCrossRefADSMathSciNetGoogle Scholar
  12. 12.
    Olmstead WE and Majumdar SR (1983). Fundamental Oseen solution for the 2-dimensional flow of a micropolar fluid. Int J Eng Sci 21(5): 423–430 MATHCrossRefGoogle Scholar
  13. 13.
    Łukaszewicz G (1999). Micropolar fluids: theory and applications. Birkhäuser, Boston MATHGoogle Scholar
  14. 14.
    Zwillinger D (1998) Handbook of differential equations. Academic PressGoogle Scholar
  15. 15.
    Pozrikidis C (1992) Boundary integral and singularity methods for linearized viscous flow. Cambridge University PressGoogle Scholar
  16. 16.
    Kohr M, Pop I (2004) Viscous incompressible flow for low Reynolds numbers. WIT PressGoogle Scholar
  17. 17.
    Lamb H (1911). On the uniform motion of a sphere through a viscous fluid. The London, Edinburgh and Dublin Philos Mag J Sci 21(6): 112–121 Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  1. 1.School of Mechanical & Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations