Journal of Engineering Mathematics

, Volume 52, Issue 1, pp 251–264

# Compression and shear of a layer of granular material

• A. J. M. Spencer
Article

## Abstract

A classical problem in metal plasticity is the compression of a block of material between rigid platens. The corresponding problem for a layer of granular material that conforms to the Coulomb-Mohr yield condition and the double-shearing theory for the velocity field has also been solved. A layer of granular material between rough rigid plates that is subjected to both compression and shearing forces is considered. Analytical solutions are obtained for the stress and velocity fields in the layer. The known solutions for steady simple shear and pure compression are recovered as special cases. Yield loads are determined for combined compression and shear in the case of Coulomb friction boundary conditions. Numerical results which describe the stress and velocity fields in terms of the normal and shear forces on the layer at yield are presented for the case in which the surfaces of the platens are perfectly rough. Post-yield behaviour is briefly considered.

## References

1. 1.
Hill, R. 1950The Mathematical Theory of PlasticityOxford University PressOxford356Google Scholar
2. 2.
Prager, W., Hodge, P.G. 1951Theory of Perfectly Plastic SolidsWileyNew York264Google Scholar
3. 3.
Prandtl, L. 1923Anwendungsbeispiele zu einem Henckyshen Satz über das plastische GleichgewichtZ. angew Math. Mech.3401406Google Scholar
4. 4.
Hartmann W. (1925). Über die Integration der Differentialgleichungen des ebenen Gleichgewiichtszustandes für den Allgemein-Plastichen Körper. Thesis, GottingenGoogle Scholar
5. 5.
Marshall, E.A. 1967The compression of a slab of ideal soil between rough platesActa Mech.38292Google Scholar
6. 6.
Spencer, A.J.M. 1964A theory of the kinematics of ideal soils under plane strain conditionsJ. Mech. Phys. Solids12337351Google Scholar
7. 7.
Spencer, A.J.M. 1982Deformation of ideal granular materialsHopkins, H.G.Sewell, M.J. eds. Mechanics of Solids; the Rodney Hill Anniversary VolumePergamon PressOxford607652Google Scholar
8. 8.
Spencer, A.J.M. 2003Double-shearing theory applied to instability and localization in granular materialsJ. Engng. Math.455574Google Scholar
9. 9.
Spencer, A.J.M. 1986Instability of shear flows of granular materialsActa Mech.647787Google Scholar
10. 10.
Savage, J.C., Lockner, D.A., Byerlee, J.D. 1996Failure in laboratory fault models in triaxial testsJ. Geophys. Res.1012221522224Google Scholar
11. 11.
Rice, J.R. 1992Fault stress state, pore pressure distributions, and the weakness of the San Andreas faultEvans, B.Wong, T.-F. eds. Fault Mechanics and Transport Properties in RocksAcademic PressSan Diego475503Google Scholar
12. 12.
Gremaud, P.A. 2004Numerical issues in plasticity models for granular flowsJ. Volcanology & Geothermal Res.13719Google Scholar
13. 13.
Alexandrov, S. 2003Compression of double-shearing and coaxial models for pressure-dependent plastic flow at frictional boundariesJ. Appl. Mech.70212219Google Scholar
14. 14.
Huaning Zhu, M.M. Mehrabadi and M. Massoudi. (2002). A comparative study of the response of double shearing and hypoplastic models. In: Proceedings of IMECE: 2002 ASME International Mechanical Engineering Congress and Exposition, New Orleans Amer. Soc. Mech. Engrs., Materials Div. Publ. MD Vol. 97. pp. 343–351Google Scholar
15. 15.
Spencer, A.J.M., Kingston, M.R. 1973Plane mechanics and kinematics of compressible ideal granular materialsRheol. Acta12194199Google Scholar
16. 16.
Mehrabadi, M.M., Cowin, S.C. 1978Initial planar deformation of dilatant granular materialsJ.Mech.Phys. Solids26269284Google Scholar
17. 17.
Mehrabadi, M.M., Cowin, S.C. 1980Pre-failure and post-failure soil plasticity modelsJ. Engng. Mech. Div. Proc ASCE1069911003Google Scholar
18. 18.
Hill, R., Lee, E.H., Tupper, S.J. 1951A method of numerical analysis of plastic flow in plane strain and its application to the compression of a ductile material between rough platesJ. Appl. Mech.84652Google Scholar