Journal of Engineering Mathematics

, Volume 51, Issue 4, pp 367–380

Stabilized finite-element method for the stationary Navier-Stokes equations

Article

Abstract

A stabilized finite-element method for the two-dimensional stationary incompressible Navier-Stokes equations is investigated in this work. A macroelement condition is introduced for constructing the local stabilized formulation of the stationary Navier-Stokes equations. By satisfying this condition, the stability of the Q1P0 quadrilateral element and the P1P0 triangular element are established. Moreover, the well-posedness and the optimal error estimate of the stabilized finite-element method for the stationary Navier-Stokes equations are obtained. Finally, some numerical tests to confirm the theoretical results of the stabilized finite-element method are provided.

Keywords

error estimation Navier-Stokes equations stabilized finite element 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Girault, V., Raviart, P.A. 1981Finite Element Method for Navier-Stokes Equations: Theory and AlgorithmsSpringer-VerlagBerlin Heidelberg202Google Scholar
  2. 2.
    Boland, J., Nicolaides, R.A. 1983Stability of finite elements under divergence constraintsSIAM J. Numer. Anal.20722731CrossRefGoogle Scholar
  3. 3.
    Stenberg, R. 1984Analysis of mixed finite elements for the Stokes problem: A unified approachMath. Comp.42923Google Scholar
  4. 4.
    Kechkar, N., Silvester, D. 1992Analysis of locally stabilized mixed finite element methods for the Stokes problemMath. Comp.58110Google Scholar
  5. 5.
    Silvester, D.J., Kechkar, N. 1990Stabilised bilinear-constant velocity–pressure finite elements for the conjugate gradient solution of the Stokes problem. CompMethods Appl. Mech. Engng797186CrossRefGoogle Scholar
  6. 6.
    Kay, D., Silvester, D. 2000A posteriori error estimation for stabilized mixed approximations of the Stokes equationsSIAM J. Sci. Comp.2113211337CrossRefGoogle Scholar
  7. 7.
    Norburn, S., Silvester, D. 1998Stabilised vs. stable mixed methods for incompressible flowComput. Methods Appl. Mech. Engng.166110CrossRefGoogle Scholar
  8. 8.
    Silvester, D., Wathen, A. 1994Fast interative solution of stabilised Stokes systems, Part II: Using general block preconditionersSIAM J. Numer. Anal.3113521367CrossRefGoogle Scholar
  9. 9.
    Braess, D. 1997Finite Elements, Theory, Fast Solvers and Applications in Solid MechnicsCambridge University PressCambridge323Google Scholar
  10. 10.
    Pitkäranta, J., Saarinen, T. 1985A multigrid version of a simple finite element method for the Stokes problemMath. Comput.45114Google Scholar
  11. 11.
    Heywood, J.G., Rannacher, R. 1982Finite element approximation of the nonstationary Navier-Stokes problem, I: Regularity of solutions and second-order error estimates for spatial discretizationSIAM J. Numer. Anal.19275311CrossRefGoogle Scholar
  12. 12.
    Kellogg, R.B., Osborn, J.E. 1976A regularity result for the Stokes problem in a convex polygonJ. Funct. Anal.21397431CrossRefGoogle Scholar
  13. 13.
    AitOu Ammi, A., Marion, M. 1994Nonlinear Galerkin methods and mixed finite elements: Two-grid algorithms for the Navier-Stokes equationsNumer. Math.68189213CrossRefGoogle Scholar
  14. 14.
    Temam, R. 1984Navier-Stokes Equations, Theory and Numerical AnalysisNorth-HollandAmsterdam526Google Scholar
  15. 15.
    Ciarlet, P.G. 1978The Finite Element Method for Elliptic ProblemsNorth-HollandAmsterdam519Google Scholar
  16. 16.
    Sani R.L., Gresho P.M., Lee R.L. and D.F. Griffiths, The cause and cure(?) of the spuious pressures generated by certain finite element method solutions of the incompressible Navier-Stokes equations. Parts 1 and 2. Int. J. Numer. Methods Fluids 1 (1981) 17–43; 171–206.Google Scholar
  17. 17.
    Hughes, T.J.R., Franca, L.P. 1987A new finite element formulation for CFD: VIThe IStokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engng.658597Google Scholar
  18. 18.
    Layton, W., Tobiska, L. 1998A two-level method with backtraking for the Navier-Stokes equationsSIAM J. Numer. Anal.3520352054CrossRefGoogle Scholar
  19. 19.
    Baker, A.J. 1983Finite Element Computational Fluid MechanicsHemisphere Pub. CorpWashington510Google Scholar
  20. 20.
    Hughes, T.J.R., Liu, W.K., Brooks, A. 1979Review of finite element analysis of incompressible viscous flow by the penalty function formulationsJ. Comp Phys.30160CrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Faculty of Science (State Key Laboratory of Multiphase Flow in Power Engineering)Xi’an Jiaotong UniversityXi’anP.R. China
  2. 2.School of Basic CoursesBeijing Institute of MachineryBeijingP.R. China
  3. 3.Faculty of ScienceXi’an Jiaotong UniversityXi’anP.R. China

Personalised recommendations