Skip to main content

Advertisement

Log in

Source apportionment of fine atmospheric particles using positive matrix factorization in Pretoria, South Africa

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In Pretoria South Africa, we looked into the origins of fine particulate matter (PM2.5), based on 1-year sampling campaign carried out between April 18, 2017, and April 17, 2018. The average PM2.5 concentration was 21.1 ± 15.0 µg/m3 (range 0.7–66.8 µg/m3), with winter being the highest and summer being the lowest. The XEPOS 5 energy dispersive X-ray fluorescence (EDXRF) spectroscopy was used for elemental analysis, and the US EPA PMF 5.0 program was used for source apportionment. The sources identified include fossil fuel combustion, soil dust, secondary sulphur, vehicle exhaust, road traffic, base metal/pyrometallurgical, and coal burning. Coal burning and secondary sulphur were significantly higher in winter and contributed more than 50% of PM2.5 sources. The HYSPLIT model was used to calculate the air mass trajectories (version 4.9). During the 1-year research cycle, five transportation clusters were established: North Limpopo (NLP), Eastern Inland (EI), Short-Indian Ocean (SIO), Long-Indian Ocean (LIO), and South Westerly-Atlantic Ocean (SWA). Local and transboundary origin accounted for 85%, while 15% were long-range transport. Due to various anthropogenic activities such as biomass burning and coal mining, NLP clusters were the key source of emissions adding to the city’s PM rate. In Pretoria, the main possible source regions of PM2.5 were discovered to be NLP and EI. Effective control strategies designed at reducing secondary sulphur, coal burning, and fossil fuel combustion emissions at Southern African level and local combustion sources would be an important measure to combat the reduction of ambient PM2.5 pollution in Pretoria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and material

The datasets generated and/or analyzed during the current study are not publicly available due to university’s intellectual property right but are available from the corresponding author on reasonable request.

References

  • Arku, R. E., Vallarino, J., Dionisio, K. L., Willis, R., Choi, H., Wilson, J. G. et al. (2008). Characterizing air pollution in two low-income neighborhoods in Accra, Ghana. Science of the Total Environment, 402, 217–231. https://doi.org/10.1016/j.scitotenv.2008.04.042

    Article  CAS  Google Scholar 

  • Bisht, D. S., Dumka, U. C., Kaskaoutis, D. G., Pipal, A. S., Srivastava, A. K., Soni, V. K., Attri, S. D., Sateesh, M., & Tiwari, S. (2015). Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing. Science of the Total Environment, 521, 431–445. https://doi.org/10.1016/j.scitotenv.2015.03.083

    Article  CAS  Google Scholar 

  • Boman, J., Lindén, J., Thorsson, S., Holmer, B., & Eliasson, I. (2009). A tentative study of urban and suburban fine particles (PM2.5) collected in Ouagadougou, Burkina Faso. X-Ray Spectrometry: An International Journal, 38, 354–362. https://doi.org/10.1002/xrs.1173

    Article  CAS  Google Scholar 

  • Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D. & Kinne, S., (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of geophysical research: Atmospheres, 118(11), 5380-5552. https://doi.org/10.1002/jgrd.50171

  • Brunekreef, B., & Holgate, S. T. (2002). Air Pollution and Health. the Lancet, 360, 1233–1242.

    CAS  Google Scholar 

  • Cavanagh, J. A. E., Zawar-Reza, P., & Wilson, J. G. (2009). Spatial attenuation of ambient particulate matter air pollution within an urbanised native forest patch. Urban Forestry & Urban Greening, 8(1), 21–30. https://doi.org/10.1016/j.ufug.2008.10.002

    Article  Google Scholar 

  • Celo, V., & Dabek-Zlotorzynska, E. (2010). Concentration and source origin of trace metals in PM 2.5 collected at selected Canadian sites within the Canadian national air pollution surveillance program. In Urban airborne particulate matter (pp. 19–38). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12278-1_2

  • Chakraborty, A., & Gupta, T. (2010). Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. India. Aerosol and Air Quality Research, 10(5), 433–445. https://doi.org/10.4209/aaqr.2009.11.0071

    Article  CAS  Google Scholar 

  • Cohen, D. D., Crawford, J., Stelcer, E., & Bac, V. T. (2010). Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmospheric Environment, 44, 320–328. https://doi.org/10.1016/j.atmosenv.2009.10.037

    Article  CAS  Google Scholar 

  • Conradie, E. H., Van Zyl, P. G., Pienaar, J. J., Beukes, J. P., Galy-Lacaux, C., Venter, A. D., & Mkhatshwa, G. V. (2016). The chemical composition and fluxes of atmospheric wet deposition at four sites in South Africa. Atmospheric Environment, 146, 113–131. https://doi.org/10.1016/j.atmosenv.2016.07.033

    Article  CAS  Google Scholar 

  • Dorling, S. R., Davies, T. D., & Pierce, C. E. (1992). Cluster analysis: A technique for estimating the synoptic meteorological controls on air and precipitation chemistry—results from Eskdalemuir, south Scotland. Atmospheric Environment. Part a. General Topics, 26, 2583–2602. https://doi.org/10.1016/0960-1686(92)90111-W

    Article  Google Scholar 

  • Draxler, R. R., Rolph, G. D. (2003). HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) Model. https://www.ready.noaa.gov/HYSPLIT.php.

  • Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H. et al. (2006). Concentration and chemical characteristics of PM2. 5 in Beijing, China: 2001–2002. Science of the Total Environment, 355, 264–275. https://doi.org/10.1016/j.scitotenv.2005.03.001

    Article  CAS  Google Scholar 

  • Engelbrecht, J. P., Swanepoel, L., Chow, J. C., Watson, J. G., & Egami, R. T. (2002). The comparison of source contributions from residential coal and low-smoke fuels, using CMB modeling, in South Africa. Environmental Science and Policy, 5, 157–167. https://doi.org/10.1016/S1462-9011(02)00029-1

    Article  CAS  Google Scholar 

  • Engelbrecht, J. P., Swanepoel, L., Zunckel, M., Chow, J. C., Watson, J. G., & Egami, R. T. (2000). Modelling PM10 aerosol data from the Qalabotjha low-smoke fuels macro-scale experiment in South Africa. Ecological Modelling, 127, 235–244. https://doi.org/10.1016/S0304-3800(99)00212-4

    Article  CAS  Google Scholar 

  • Formenti, P., Annegarn, H. J., & Piketh, S. J. (1998). Time resolved aerosol monitoring in the urban centre of Soweto. Nuclear Instruments and Methods in Physics Research Section b: Beam Interactions with Materials and Atoms, 136, 948–954. https://doi.org/10.1016/S0168-583X(97)00770-2

    Article  Google Scholar 

  • Gaita, S. M., Boman, J., Gatari, M. J., Pettersson, J. B., & Janhäll, S. (2014). Source apportionment and seasonal variation of PM2.5 in a Sub-Saharan African city: Nairobi. Kenya. Atmospheric Chemistry and Physics, 14, 9977–9991. https://doi.org/10.5194/acp-14-9977-2014

    Article  CAS  Google Scholar 

  • Gu, J., Pitz, M., Schnelle-Kreis, J., Diemer, J., Reller, A., Zimmermann, R. et al. (2011). Source apportionment of ambient particles: Comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmospheric Environment, 45, 1849–1857. https://doi.org/10.1016/j.atmosenv.2011.01.009

    Article  CAS  Google Scholar 

  • Hersey, S. P., Garland, R. M., Crosbie, E., Shingler, T., Sorooshian, A., Piketh, S., & Burger, R. (2015). An overview of regional and local characteristics of aerosols in South Africa using satellite, ground, and modeling data. Atmospheric Chemistry and Physics, 15, 4259–4278. https://doi.org/10.5194/acp-15-4259-2015

    Article  CAS  Google Scholar 

  • Heo, J. B., Hopke, P. K., & Yi, S. M. (2009). Source apportionment of PM2.5 in Seoul, Korea. Atmospheric Chemistry and Physics, 9, 4957–4971. https://doi.org/10.5194/acp-9-4957-2009

    Article  CAS  Google Scholar 

  • Huang, F., Zhou, J., Chen, N., Li, Y., Li, K., & Wu, S. (2019). Chemical characteristics and source apportionment of PM2.5 in Wuhan. China. Journal of Atmospheric Chemistry, 76, 245–262. https://doi.org/10.1007/s10874-019-09395-0

    Article  CAS  Google Scholar 

  • Hunter, D., Salzman, J., & Zaelke, D. (2007). International environmental law and policy (Vol. 516). Foundation Press.

    Google Scholar 

  • Iijima, A., Sato, K., Fujitani, Y., Fujimori, E., Saito, Y., Tanabe, K. et al. (2009). Clarification of the predominant emission sources of antimony in airborne particulate matter and estimation of their effects on the atmosphere in Japan. Environmental Chemistry, 6, 122–132. https://doi.org/10.1071/EN08107

    Article  CAS  Google Scholar 

  • Iijima, A., Sato, K., Yano, K., Kato, M., Kozawa, K., & Furuta, N. (2008). Emission factor for antimony in brake abrasion dusts as one of the major atmospheric antimony sources. Environmental Science and Technology, 42, 2937–2942. https://doi.org/10.1021/es702137g

    Article  CAS  Google Scholar 

  • Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B., & Cassee, F. R. (2011). Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental health perspectives119(12), pp.1691–1699. https://doi.org/10.1289/ehp.1003369

  • Jayasekher, T. (2009). Aerosols near by a coal fired thermal power plant: Chemical composition and toxic evaluation. Chemosphere, 75, 1525–1530. https://doi.org/10.1016/j.chemosphere.2009.02.001

    Article  CAS  Google Scholar 

  • Kappos, A. D., Bruckmann, P., Eikmann, T., Englert, N., Heinrich, U., Höppe, P. et al. (2004). Health effects of particles in ambient air. International Journal of Hygiene and Environmental Health, 207, 399–407. https://doi.org/10.1078/1438-4639-00306

    Article  CAS  Google Scholar 

  • Krzyzanowski, M., Apte, J. S., Bonjour, S. P., Brauer, M., Cohen, A. J., & Prüss-Ustun, A. M. (2014). Air pollution in the mega-cities. Current Environmental Health Reports, 1, 185–191. https://doi.org/10.1007/s40572-014-0019-7

    Article  CAS  Google Scholar 

  • Lee, H. J., Gent, J. F., Leaderer, B. P., & Koutrakis, P. (2011). Spatial and temporal variability of fine particle composition and source types in five cities of Connecticut and Massachusetts. Science of the Total Environment, 409, 2133–2142. https://doi.org/10.1016/j.scitotenv.2011.02.025

    Article  CAS  Google Scholar 

  • Li, Y., Henze, D. K., Jack, D., Henderson, B. H., & Kinney, P. L. (2016). Assessing public health burden associated with exposure to ambient black carbon in the United States. Science of the Total Environment, 539, 515–525. https://doi.org/10.1016/j.scitotenv.2015.08.129

    Article  CAS  Google Scholar 

  • Lockwood, A. H., & Evans, L. (2014). Ash in lungs: how breathing coal ash is hazardous to your health. A report from Physicians for Social Responsibility and Earthjustice. https://earthjustice.org/sites/default/files/files/Ash_In_Lungs_1. pdf.

  • Lokotola, C. L., Wright, C. Y., & Wichmann, J. (2020). Temperature as a modifier of the effects of air pollution on cardiovascular disease hospital admissions in Cape Town, South Africa. Environmental Science and Pollution Research, 27, 16677–16685. https://doi.org/10.1007/s11356-020-07938-7

    Article  CAS  Google Scholar 

  • Mahilang, M., Deb, M. K., Nirmalkar, J., & Pervez, S. (2020). Influence of fireworks emission on aerosol aging process at lower troposphere and associated health risks in an urban region of eastern central India. Atmospheric Pollution Research, 11(7), 1127–1141. https://doi.org/10.1016/j.apr.2020.04.009

    Article  CAS  Google Scholar 

  • Martins, V., Moreno, T., Minguillón, M. C., Van Drooge, B. L., Reche, C., Amato, F. et al. (2016). Origin of inorganic and organic components of PM2.5 in subway stations of Barcelona. Spain. Environmental Pollution, 208, 125–136. https://doi.org/10.1016/j.envpol.2015.07.004

    Article  CAS  Google Scholar 

  • Mathuthu, M., Dudu, V. P., & Manjoro, M. (2018). Source apportionment of air particulates in South Africa: A review. Atmospheric and Climate Sciences, 9, 100–113. https://doi.org/10.4236/acs.2019.91007

    Article  CAS  Google Scholar 

  • Molnár, P., Johannesson, S., & Quass, U. (2014). Source apportionment of PM2.5 using positive matrix factorization (PMF) and PMF with factor selection. Aerosol and Air Quality Research, 14, 725–733. https://doi.org/10.4209/aaqr.2013.11.0335

    Article  Google Scholar 

  • Molnár, P., Tang, L., Sjöberg, K., & Wichmann, J. (2017). Long-range transport clusters and positive matrix factorization source apportionment for investigating transboundary PM2.5 in Gothenburg. Sweden. Environmental Science: Processes and Impacts, 19, 1270–1277. https://doi.org/10.1039/C7EM00122C

    Article  Google Scholar 

  • Moon, K. J., Han, J. S., Ghim, Y. S., & Kim, Y. J. (2008). Source apportionment of fine carbonaceous particles by positive matrix factorization at Gosan background site in East Asia. Environment International, 34, 654–664. https://doi.org/10.1016/j.envint.2007.12.021

    Article  CAS  Google Scholar 

  • Moreno, T., Querol, X., Alastuey, A., de la Rosa, J., de la Campa, A. M. S., Minguillón, M. et al. (2010). Variations in vanadium, nickel and lanthanoid element concentrations in urban air. Science of the Total Environment, 408, 4569–4579. https://doi.org/10.1016/j.scitotenv.2010.06.016

    Article  CAS  Google Scholar 

  • Ni, T., Li, P., Han, B., Bai, Z., Ding, X., Wang, Q., Huo, J., & Lu, B. (2013). Spatial and temporal variation of chemical composition and mass closure of ambient PM10 in Tianjin. China. Aerosol and Air Quality Research, 13(6), 1832–1846. https://doi.org/10.4209/aaqr.2012.10.0283

    Article  CAS  Google Scholar 

  • Norris, G., Vedantham, R., Wade, K., Brown, S., Prouty, J., Foley, C. (2008). EPA positive matrix factorization (PMF) 3.0 fundamentals & user guide. Prepared for the US Environmental Protection Agency, Washington, DC, by the National Exposure Research Laboratory, Research Triangle Park.

  • Novela, R., Gitari, M., Chikoore, H., & Wichmann, J. (2019). Quantification of fine particulate matter in ambient air, chemical characterization and the geographical origin of the air masses passing through Thohoyandou, South Africa. Environmental Epidemiology, 3, 438. https://doi.org/10.1097/01.EE9.0000610936.96119.4a

  • Owoade, K. O., Hopke, P. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., Olaniyi, B. H. et al. (2015). Chemical compositions and source identification of particulate matter (PM2.5 and PM2.5–10) from a scrap iron and steel smelting industry along the Ife-Ibadan highway. Nigeria. Atmospheric Pollution Research, 6, 107–119. https://doi.org/10.5094/APR.2015.013

    Article  CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126. https://doi.org/10.1002/env.3170050203

    Article  Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 37, 23–35. https://doi.org/10.1016/S0169-7439(96)00044-5

    Article  CAS  Google Scholar 

  • Pant, P., & Harrison, R. M. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78–97. https://doi.org/10.1016/j.atmosenv.2013.04.028

    Article  CAS  Google Scholar 

  • Pauw, C. J., Friedl, A., Holm, D., John, J., Kornelius, G., Oosthuizen, R., & Van Niekerk, A. S. (2008). Air pollution in dense, low-income settlements in South Africa: Issue 1. Report to the Royal Danish Embassy and the Dept. of Environmental Affairs and Tourism6.

  • Raja, S., Chandrasekaran, S. R., Lin, L., Xia, X., Hopke, P. K., & Valsaraj, K. T. (2016). Analysis of beta attenuation monitor filter rolls for particulate matter speciation. Aerosol and Air Quality Research, 17, 14–23. https://doi.org/10.4209/aaqr.2016.03.0122

    Article  CAS  Google Scholar 

  • Reff, A., Eberly, S. I., & Bhave, P. V. (2007). Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. Journal of the Air and Waste Management Association, 57, 146–154. https://doi.org/10.1080/10473289.2007.10465319

    Article  CAS  Google Scholar 

  • Rupp, G. (2009). Aerosol dynamics and health: Strategies to reduce exposure and harm. Biomarkers, 14(sup1), 3–4. https://doi.org/10.1080/13547500903145458

    Article  CAS  Google Scholar 

  • Ryu, S. Y., Kwon, B. G., Kim, Y. J., Kim, H. H., & Chun, K. J. (2007). Characteristics of biomass burning aerosol and its impact on regional air quality in the summer of 2003 at Gwangju. Korea. Atmospheric Research, 84(4), 362–373. https://doi.org/10.1016/j.atmosres.2006.09.007

    Article  CAS  Google Scholar 

  • Ryu, Y. H., Baik, J. J., Kwak, K. H., Kim, S., & Moon, N. (2013). Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area. Atmospheric Chemistry and Physics, 13(4), 2177–2194. https://doi.org/10.5194/acp-13-2177-2013

    Article  CAS  Google Scholar 

  • Salma, I., Maenhaut, W., Cafmeyer, J., Annegarn, H. J., & Andreae, M. O. (1994). PIXE analysis of cascade impactor samples collected at the Kruger National Park, South Africa. Nuclear Instruments and Methods in Physics Research Section b: Beam Interactions with Materials and Atoms, 85, 849–855. https://doi.org/10.1016/0168-583X(94)95936-6

    Article  CAS  Google Scholar 

  • Sandradewi, J., Prévôt, A. S. H., Weingartner, E., Schmidhauser, R., Gysel, M., & Baltensperger, U. (2008a). A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer. Atmospheric Environment, 42, 101–112. https://doi.org/10.1016/j.atmosenv.2007.09.034

    Article  CAS  Google Scholar 

  • Sandradewi, J., Prévôt, A. S., Szidat, S., Perron, N., Alfarra, M. R., Lanz, V. A. et al. (2008b). Using aerosol light absorption measurements for the quantitative determination of wood burning and traffic emission contributions to particulate matter. Environmental Science and Technology, 42, 3316–3323. https://doi.org/10.1021/es702253m

    Article  CAS  Google Scholar 

  • Schwartz, J. (2004). Air pollution and children’s health. Pediatrics, 113(Supplement 3), 1037–1043.

    Google Scholar 

  • Schwarz, J., Cusack, M., Karban, J., Chalupníčková, E., Havránek, V., Smolík, J., & Ždímal, V. (2016). PM2.5 chemical composition at a rural background site in Central Europe, including correlation and air mass back trajectory analysis. Atmospheric Research, 176, 108–120. https://doi.org/10.1016/j.atmosres.2016.02.017

    Article  CAS  Google Scholar 

  • Scorgie, Y., Annegarn, H., & Burger, L. (2004). Study to examine the potential socioeconomic impact of measures to reduce air pollution from combustion, Fund for Research into Industrial Development Growth and Equity (FRIDGE). Trade and Industry Chamber, Johannesburg.

  • Shah, M. H., Shaheen, N., & Nazir, R. (2012). Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad. Pakistan. Atmospheric Pollution Research, 3(1), 39–45. https://doi.org/10.5094/APR.2012.003

    Article  CAS  Google Scholar 

  • Shaltout, A. A., Boman, J., Hassan, S. K., Abozied, A. M., Al-Ashkar, E. A., Abd-Elkader, O. H. et al. (2020). Elemental composition of PM2.5 aerosol in a residential–industrial area of a Mediterranean Megacity. Archives of Environmental Contamination and Toxicology, 78, 68–78. https://doi.org/10.1007/s00244-019-00688-9

    Article  CAS  Google Scholar 

  • Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B. et al. (2013). Aerosol composition, sources and processes during wintertime in Beijing, China. Atmospheric Chemistry and Physics, 13, 4577–4592. https://doi.org/10.5194/acp-13-4577-2013

    Article  CAS  Google Scholar 

  • Tang, L., Haeger-Eugensson, M., Sjöberg, K., Wichmann, J., Molnár, P., & Sallsten, G. (2014). Estimation of the long-range transport contribution from secondary inorganic components to urban background PM10 concentrations in south-western Sweden during 1986–2010. Atmospheric Environment, 89, 93–101. https://doi.org/10.1016/j.atmosenv.2014.02.018

    Article  CAS  Google Scholar 

  • Teich, M., Pinxteren, D. V., Wang, M., Kecorius, S., Wang, Z., Müller, T. et al. (2017). Contributions of nitrated aromatic compounds to the light absorption of water-soluble and particulate brown carbon in different atmospheric environments in Germany and China. Atmospheric Chemistry and Physics, 17, 1653–1672. https://doi.org/10.5194/acp-17-1653-2017

    Article  CAS  Google Scholar 

  • Tshehla, C., & Djolov, G. (2018). Source profiling, source apportionment and cluster transport analysis to identify the sources of PM and the origin of air masses to an industrialised rural area in Limpopo. Clean Air Journal28, 54–66. https://doi.org/10.17159/2410-972x/2018/v28n2a18

  • Viana, M., Kuhlbusch, T. A., Querol, X., Alastuey, A., Harrison, R. M., Hopke, P. K. et al. (2008). Source apportionment of particulate matter in Europe: A review of methods and results. Journal of Aerosol Science, 39, 827–849. https://doi.org/10.1016/j.jaerosci.2008.05.007

    Article  CAS  Google Scholar 

  • Venter, A. D., Zyl, P. G. V., Beukes, J. P., Josipovic, M., Hendriks, J., Vakkari, V., & Laakso, L. (2017). Atmospheric trace metals measured at a regional background site (Welgegund) in South Africa. Atmospheric Chemistry and Physics, 17, 4251–4263. https://doi.org/10.5194/acp-17-4251-2017

    Article  CAS  Google Scholar 

  • Von Schirnding, Y., Bruce, N., Smith, K., Ballard-Tremeer, G., Ezzati, M., & Lvovsky, K. (2002). Addressing the impact of household energy and indoor air pollution on the health of poor: Implications for policy action and intervention measures (p. 52). World Health Organization.

    Google Scholar 

  • Wåhlin, P., Berkowicz, R., & Palmgren, F. (2006). Characterisation of traffic-generated particulate matter in Copenhagen. Atmospheric Environment, 40, 2151–2159. https://doi.org/10.1016/j.atmosenv.2005.11.049

    Article  CAS  Google Scholar 

  • Wang, H., Zhou, Y., Zhuang, Y., Wang, X., & Hao, Z. (2009). Characterization of PM 2.5/PM 2.5–10 and source tracking in the juncture belt between urban and rural areas of Beijing. Chinese Science Bulletin, 54, 2506–2515. https://doi.org/10.1007/s11434-009-0021-x

    Article  CAS  Google Scholar 

  • Wang, J., & Ogawa, S. (2015). Effects of meteorological conditions on PM2. 5 concentrations in Nagasaki, Japan. International journal of environmental research and public health12(8), pp.9089–9101. https://doi.org/10.3390/ijerph120809089

  • Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y. et al. (2015). Spatial and seasonal variations of PM2. 5 mass and species during 2010 in Xi’an. China. Science of the Total Environment, 508, 477–487. https://doi.org/10.1016/j.scitotenv.2014.11.007

    Article  CAS  Google Scholar 

  • Wang, S., Pavuluri, C.M., Ren, L., Fu, P., Zhang, Y.L. & Liu, C.Q., (2018). Implications for biomass/coal combustion emissions and secondary formation of carbonaceous aerosols in North China. RSC advances, 8(66), 38108-38117. https://doi.org/10.1039/C8RA06127K

  • Wichmann, J., Sjöberg, K., Tang, L., Haeger-Eugensson, M., Rosengren, A., Andersson, E. M. et al. (2014). The effect of secondary inorganic aerosols, soot and the geographical origin of air mass on acute myocardial infarction hospitalisations in Gothenburg, Sweden during 1985–2010: A case-crossover study. Environmental Health, 13, 1–16.

    Article  Google Scholar 

  • Wichmann, J., & Voyi, K. V. (2005). Air pollution epidemiologic studies in South Africa—need for freshening up. Reviews on Environmental Health, 20, 265–301.

    Article  Google Scholar 

  • Williams, J., Petrik, L., & Wichmann, J. (2020). PM2.5 chemical composition and geographical origin of air masses in Cape Town, South Africa. Air Quality, Atmosphere and Health, 1–12. https://doi.org/10.1007/s11869-020-00947-y

  • WHO. (2013). Air pollution www.who.int/topics/air_pollution/en/

  • Yin, S., Shen, Z., Zhou, P., Zou, X., Che, S., & Wang, W. (2011). Quantifying air pollution attenuation within urban parks: An experimental approach in Shanghai. China. Environmental Pollution, 159(8–9), 2155–2163. https://doi.org/10.1016/j.envpol.2011.03.009

    Article  CAS  Google Scholar 

  • Yu, L., Wang, G., Zhang, R., Zhang, L., Song, Y., Wu, B. et al. (2013). Characterization and source apportionment of PM2.5 in an urban environment in Beijing. Aerosol and Air Quality Research, 13, 574–583. https://doi.org/10.4209/aaqr.2012.07.0192

    Article  CAS  Google Scholar 

  • Zhang, Y., & Jiang, W. (2018). Pollution characteristics and influencing factors of atmospheric particulate matter (PM2.5) in Chang-Zhu-Tan area. In IOP Conference Series: Earth and Environmental Science (Vol. 108, No. 4, p. 042047). IOP Publishing. https://doi.org/10.1088/1755-1315/108/4/042047

  • Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y., & Cass, G. R. (2005). Seasonal trends in PM2.5 source contributions in Beijing. China. Atmospheric Environment, 39, 3967–3976. https://doi.org/10.1016/j.atmosenv.2005.03.036

    Article  CAS  Google Scholar 

  • Zunckel, M., Diab, R. & Mogesh, N., (2008). Types and sources of air pollutants. Pretoria: Department of Environmental affairs and tourism.

Download references

Acknowledgements

The authors gratefully acknowledge the NOAA Air Resources Laboratory for providing the HYSPLIT model and the NCEP Reanalysis datasets, as well as the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA. The authors would like to thank the South African Weather Service for the air pollution and meteorological data, University of Pretoria, and the National Research Foundation for the doctoral scholarship of A.A.A.

Funding

JW received funding from the South African National Research Foundation under the Collaborative Postgraduate Training Programme grant (CPT160424162937).

Author information

Authors and Affiliations

Authors

Contributions

JW conceptualized the research. The research design, methodology, analysis of findings, and writing of the manuscript were all the responsibility of the authors. The statistical analyses were carried out by AA and PM. JB was responsible for the chemical analysis. The authors read and approved the final manuscript.

Corresponding author

Correspondence to Adewale Adeyemi.

Ethics declarations

Ethics approval

The Research Ethics Committee, Faculty of Health Sciences, University of Pretoria, approved ethics approval (reference 469/2017) in 2017.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 419 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeyemi, A., Molnar, P., Boman, J. et al. Source apportionment of fine atmospheric particles using positive matrix factorization in Pretoria, South Africa. Environ Monit Assess 193, 716 (2021). https://doi.org/10.1007/s10661-021-09483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09483-3

Keywords

Navigation