Skip to main content

Advertisement

Log in

A first evaluation of water resource conditions after an environmental reclamation effort at a former degraded coal mining area in Southern Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In southern South America, Brazil, in the state of Santa Catarina, the neglect and lack of environmental supervision during coal mining caused the contamination of surface and groundwater by acid mine drainage (AMD). By the force of the local law, environmental reclamation actions in these abandoned areas have been carried. A scientific work of monitoring and assessment of the water resources within these areas has never been developed, as the efficacy of the reclamation strategies has never been discussed. This work aims to fill this gap by presenting and analyzing the environmental reclamation strategy of a former degraded coal mining area and its impacts on local water resources. The water monitoring plan in Area IV’s was carried out in groundwater, and in lentic (ponds) and lotic (rivers) environments of surface waters, fourteen monitoring campaigns were conducted. The results showed that upstream and downstream river points have different water qualities, with the downstream points having poorer water quality, still affected by past mining activities. From the surface water perspective, the reclaiming method adopted was effective in three of the four ponds, presenting problems only in the downstream one. Two hypotheses were proposed; the first hypothesis is that contamination happens due to leaching of the material that still remains on the ponds’ banks into the water. Another hypothesis is that the contamination comes from the upstream groundwater inflow into the pond, which runs through the entire area before reaching the pond. Those results serve to further access the actual monitoring perspectives as well as to better develop future reclaiming strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Alexandre, N. Z., & Krebs, A. S. J. (1995). Qualidade das águas superficiais do município de Criciúma - SC. Porto Alegre. http://rigeo.cprm.gov.br/jspui/handle/doc/8457

  • Alexandre, N. Z. (1999). Diagnóstico ambiental da região carbonífera de Santa Catarina: Degradação dos recursos naturais. Revista Tecnologia e Ambiente, 5(2), 35–50.

    Google Scholar 

  • Ardejani, F. D., Shokri, B. J., Moradzadeh, A., Shafaei, S. Z., & Kakaei, R. (2011). Geochemical characterisation of pyrite oxidation and environmental problems related to release and transport of metals from a coal washing low-grade waste dump, Shahrood, northeast Iran. Environmental Monitoring and Assessment, 183(1–4), 41–55. https://doi.org/10.1007/s10661-011-1904-2

    Article  CAS  Google Scholar 

  • Bell, F. G., Bullock, S. E. T., Hälbich, T. F. J., & Lindsay, P. (2001). Environmental impacts associated with an abandoned mine in the Witbank Coalfield, South Africa. International Journal of Coal Geology, 45(2), 195–216. https://doi.org/10.1016/S0166-5162(00)00033-1

    Article  CAS  Google Scholar 

  • Bian, Z., Inyang, H. I., Daniels, J. L., Otto, F., & Struthers, S. (2010). Environmental issues from coal mining and their solutions. Mining Science and Technology, 20(2), 215–223. https://doi.org/10.1016/S1674-5264(09)60187-3

    Article  Google Scholar 

  • Boiten, W. (2008). Hydrometry: A comprehensive introduction to the measurement of flow in open channels. CRC Press.

  • Burrows, J. E., Peters, S. C., & Cravotta, C. A. (2015). Temporal geochemical variations in above- and below-drainage coal mine discharge. Applied Geochemistry, 62, 84–95. https://doi.org/10.1016/j.apgeochem.2015.02.010

    Article  CAS  Google Scholar 

  • Campaner, V. P., Luiz-Silva, W., & Machado, W. (2014). Geochemistry of acid mine drainage from a coal mining area and processes controlling metal attenuation in stream waters, southern Brazil. Anais Da Academia Brasileira De Ciencias, 86(2), 539–554. https://doi.org/10.1590/0001-37652014113712

    Article  CAS  Google Scholar 

  • Casagrande, M. F. S., Moreira, C. A., & Targa, D. A. (2019). Study of generation and underground flow of acid mine drainage in waste rock pile in an uranium mine using electrical resistivity tomography. Pure and Applied Geophysics, (Naidoo 2017). https://doi.org/10.1007/s00024-019-02351-9

  • Cravotta, C. A. (1989). Geochemical evolution of ground water at a reclaimed surface coal mine in western Pennsylvania. Abstracts with Programs - Geological Society of America, 21(2), 10. https://doi.org/10.21000/JASMR91010043

  • Cravotta, C. A., Brady, K. B., Rose, A. W., & Douds, J. B. (1999). Frequency distribution of the pH of coal-mine drainage in Pennsylvania. U.S. Geological Survey Water-Resources Investigative Report. 99–4018A, (September 2016), 313–324.

  • de Freitas, L. A., Rambo, C. L., Franscescon, F., de Barros, A. F. P., dos De Lucca, G., S., Siebel, A. M., et al. (2017). Coal extraction causes sediment toxicity in aquatic environments in Santa Catarina. Brazil. Revista Ambiente e Agua, 12(4), 591–604.

    Article  Google Scholar 

  • do Amaral Filho, J. R., Weiler, J., Broadhurst, J. L., & Schneider, I. A. H. (2017). The use of static and humidity cell tests to assess the effectiveness of coal waste desulfurization on acid rock drainage risk. Mine Water and the Environment, 36(3), 429–435. https://doi.org/10.1007/s10230-017-0435-7

    Article  CAS  Google Scholar 

  • Earth, G. (2019). V 7.3.4.8248 Siderópolis city, Brazil. 28°35’50.21”S, 49°26’05.99”O, Eye alt 103 m. CNES / Airbus 2021. http://www.earth.google.com [November 26, 2020].

  • Gotardo, R., Piazza, G. A., Torres, E., Severo, D. L., & Kaufmann, V. (2018). Distribuição espacial e temporal das chuvas no estado de Santa Catarina. Geosul, 33(67), 253–276. https://doi.org/10.5007/2177-5230.2018v33n67p253

    Article  Google Scholar 

  • Gomes, C. J. B., Mendes, C. A. B., & Costa, J. F. C. L. (2011). The environmental impact of coal mining: A case study in Brazil’s Sangão Watershed. Mine Water and the Environment, 30(3), 159–168. https://doi.org/10.1007/s10230-011-0139-3

    Article  CAS  Google Scholar 

  • Gothe, C. A. V. (1993). Avaliação dos impactos ambientais da indústria carbonífera nos recursos hídricos da região sul catarinense. Universidade Federal de Santa Catarina.

  • Gray, N. (1996). Field assessment of acid mine drainage contamination in surface and ground water. Environmental Geology, 27, 358–361. https://doi.org/10.1007/BF00766705

    Article  CAS  Google Scholar 

  • Gray, N. F. (1998). Practical assessment techniques for the impact of acid mine drainage on riverine systems. Indian Journal of Engineering and Materials Sciences, 5(4), 147–161.

    CAS  Google Scholar 

  • Haigh, M., & Kilmartin, M. P. (2017). Illustrating the water quality impacts of reclaimed opencast coal lands, SE Wales. In F. and A. O. of the U. N. (FAO) (Ed.), Working Party on the Management of Mountain Watersheds: Management of municipal watersheds in mountain regions (pp. 87–115). Prague.

  • Haigh, M., & Kilmartin, M. P. (2015). Reclaimed opencast coal lands in Southeast Wales: Impacts on water quality. In Surface and sub-surface water in Asia—Issues and perspectives (Vol. 23, pp. 16–46). IOS Press BV. https://doi.org/10.3233/978-1-61499-540-1-16

  • Hayashi, M., & Rosenberry, D. O. (2002). Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water. https://doi.org/10.1111/j.1745-6584.2002.tb02659.x

    Article  Google Scholar 

  • IPAT/UNESC. (2010). Planos de recuperação de áreas degradadas pela mineração do carvão, no estado de Santa Catarina, correspondentes às áreas da ex-Treviso S.A., de responsabilidade da união – Diagnóstico ambiental – Bloco 1. Criciúma.

  • Jung, M. C., & Thornton, I. (1997). Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. The Science of the Total Environment, 9697(97).

  • Kimball, B. A., Runkel, R. L., Walton-Day, K., & Bencala, K. E. (2002). Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA. Applied Geochemistry, 17(9), 1183–1207. https://doi.org/10.1016/S0883-2927(02)00017-3

    Article  CAS  Google Scholar 

  • Lattuada, R. M., Menezes, C. T. B., Pavei, P. T., Peralba, M. C. R., & Dos Santos, J. H. Z. (2009). Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. Journal of Hazardous Materials, 163(2–3), 531–537. https://doi.org/10.1016/j.jhazmat.2008.07.003

    Article  CAS  Google Scholar 

  • Lee, G. C., Chon, H. T., & Jung, M. C. (2001). Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Applied Geochemistry, 16, 1377–1386.

    Article  CAS  Google Scholar 

  • Lin, C., Tong, X., Lu, W., Yan, L., Wu, Y., Nie, C., et al. (2005). Environmental impacts of surface mining on mined lands, affected streams and agricultural lands in the Dabaoshan Mine region, southern China. Land Degradation and Development, 16(5), 463–474. https://doi.org/10.1002/ldr.675

    Article  Google Scholar 

  • Lottermoser, B. G., Ashley, P. M., & Lawie, D. C. (1999). Environmental geochemistry of the Gulf Creek copper mine area, north-eastern New South Wales. Australia. Environmental Geology, 39(1), 61–74. https://doi.org/10.1007/s002540050437

    Article  CAS  Google Scholar 

  • Mulholland, D. S., Boaventura, G. R., & Araújo, D. F. (2013). Modelo geoquímico aplicado à avaliação da qualidade de água da bacia do alto curso do Rio Paracatu – MG. Brazilian Journal of Aquatic Science and Technology, 14(2), 39. https://doi.org/10.14210/bjast.v14n2.p39-46

  • Nordstrom, D. K. (1982). Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In Acid Sulfate Weathering (pp. 37–56). https://doi.org/10.2136/sssaspecpub10.c3

  • Núñez-Gómez, D., Rodrigues, C., Lapolli, F. R., & Lobo-Recio, M. Á. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). https://doi.org/10.1016/j.jece.2018.11.032

  • Ochieng, G. M., Seanego, E. S., & Nkwonta, O. I. (2010). Impacts of mining on water resources in South Africa: A review. Scientific Research and Essays, 5(22), 3351–3357.

    Google Scholar 

  • Olías, M., Cánovas, C. R., Nieto, J. M., & Sarmiento, A. M. (2006). Evaluation of the dissolved contaminant load transported by the Tinto and Odiel rivers (South West Spain). Applied Geochemistry, 21(10), 1733–1749. https://doi.org/10.1016/j.apgeochem.2006.05.009

    Article  CAS  Google Scholar 

  • Ouyang, Y., Liu, Y., Zhu, R., Ge, F., Xu, T., Luo, Z., & Liang, L. (2015). Pyrite oxidation inhibition by organosilane coatings for acid mine drainage control. Minerals Engineering, 72, 57–64. https://doi.org/10.1016/j.mineng.2014.12.020

    Article  CAS  Google Scholar 

  • Park, I., Tabelin, C. B., Jeon, S., Li, X., Seno, K., Ito, M., & Hiroyoshi, N. (2019). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053

    Article  CAS  Google Scholar 

  • Prieto, G., & Duitama, L. M. (2004). Acid drainage of coal mining in Cundinamarca Department, Colombia. In Environmental Geochemistry in Tropical and Subtropical Environments (pp. 125–134). https://doi.org/10.1007/978-3-662-07060-4_11

  • Puls, R. W., & Barcelona, M. J. (1996). Low-flow (minimal drawdown) ground-water sampling procedures. U.S. EPA Ground Water Issue: EPA/540/S-95/504.

  • Qureshi, A., Maurice, C., & Öhlander, B. (2016). Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 160, 44–54. https://doi.org/10.1016/j.gexplo.2015.10.014

    Article  CAS  Google Scholar 

  • Rambabu, K., Banat, F., Pham, Q. M., Ho, S. H., Ren, N. Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024

    Article  Google Scholar 

  • Rathore, C. S., & Wright, R. (2007). Monitoring environmental impacts of surface coal mining. International Journal of Remote Sensing, 14(6), 1021–1042.

    Article  Google Scholar 

  • Rösner, T., & Van Schalkwyk, A. (2000). The environmental impact of gold mine tailings footprints in the Johannesburg region, South Africa. Bulletin of Engineering Geology and the Environment, 59(2), 137–148. https://doi.org/10.1007/s100640000037

    Article  Google Scholar 

  • Sáinz, A., Grande, J. A., De La Torre, M. L., & Sánchez-Rodas, D. (2002). Characterisation of sequential leachate discharges of mining waste rock dumps in the Tinto and Odiel rivers. Journal of Environmental Management, 64(4), 345–353. https://doi.org/10.1006/jema.2001.0497

    Article  Google Scholar 

  • Sarmiento, A. M., Grande, J. A., Luís, A. T., Dávila, J. M., Fortes, J. C., Santisteban, M., et al. (2018). Negative pH values in an open-air radical environment affected by acid mine drainage. Characterization and proposal of a hydrogeochemical model. Science of the Total Environment, 644, 1244–1253. https://doi.org/10.1016/j.scitotenv.2018.06.381

    Article  CAS  Google Scholar 

  • Simão, G., Pereira, J. L., Alexandre, N. Z., Galatto, S. L., & Viero, A. P. (2019). Estabelecimento de valores de background geoquímico de parâmetros relacionados a contaminação por carvão Establishment of geochemical background values of parameters related to coal contamination. Revista Água Subterrânea, 33(2), 109–118. https://doi.org/10.14295/ras.v33i2.29207

  • Sontek. (2019). FlowTracker2: User’s Manual. San Diego. http://www.geotechenv.com/Manuals/SonTek_Manuals/sontek_flowtracker2_manual.pdf

  • Sracek, O., Gzyl, G., Frolik, A., Kubica, J., Bzowski, Z., Gwoździewicz, M., & Kura, K. (2010). Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environmental Monitoring and Assessment, 165(1–4), 233–254. https://doi.org/10.1007/s10661-009-0941-6

    Article  CAS  Google Scholar 

  • Tao, X., Wu, P., Tang, C., Liu, H., & Sun, J. (2012). Effect of acid mine drainage on a karst basin: A case study on the high-as coal mining area in Guizhou province. China. Environmental Earth Sciences, 65(3), 631–638. https://doi.org/10.1007/s12665-011-1110-0

    Article  CAS  Google Scholar 

  • Underwood, B. E., Kruse, N. A., & Bowman, J. R. (2014). Long-term chemical and biological improvement in an acid mine drainage-impacted watershed. Environmental Monitoring and Assessment, 186(11), 7539–7553. https://doi.org/10.1007/s10661-014-3946-8

    Article  CAS  Google Scholar 

  • Volpato, S. B., de Menezes, C. T. B., & da Silva, J. V. F. (2017). Recuperação ambiental de ecossistemas aquáticos em regiões estuarinas: Estudos aplicados para o tratamento de sedimentos contaminados pela drenagem ácida de mina na Bacia Hidrográfica do Rio Urussanga. Santa Catarina. Engenharia Sanitaria e Ambiental, 22(2), 313–316. https://doi.org/10.1590/s1413-41522016126487

    Article  Google Scholar 

  • Wang, Z., Xu, Y., Zhang, Z., & Zhang, Y. (2021). Review: Acid mine drainage (AMD) in abandoned coal mines of Shanxi. China. Water (switzerland), 13(1), 1–21. https://doi.org/10.3390/w13010008

    Article  CAS  Google Scholar 

  • Wright, I. A., Paciuszkiewicz, K., & Belmer, N. (2018). Increased water pollution after closure of Australia’s longest operating underground coal mine: A 13-month study of mine drainage, water chemistry and river ecology. Water, Air, and Soil Pollution, 229(3). https://doi.org/10.1007/s11270-018-3718-0

  • Xin, R., Banda, J. F., Hao, C., Dong, H., Pei, L., Guo, D., et al. (2021). Contrasting seasonal variations of geochemistry and microbial community in two adjacent acid mine drainage lakes in Anhui Province. China. Environmental Pollution, 268, 115826. https://doi.org/10.1016/j.envpol.2020.115826

    Article  CAS  Google Scholar 

  • Yang, J. E., Skousen, J. G., Ok, Y. S., Yoo, K. Y., & Kim, H. J. (2006). Reclamation of abandoned coal mine waste in Korea using lime cake by-products. Mine Water and the Environment, 25(4), 227–232. https://doi.org/10.1007/s10230-006-0137-z

    Article  CAS  Google Scholar 

  • Younger, P. L., Geol, C. C. E., & Sapsford, D. J. (2004). Evaluating the potential impact of opencasr coal mining on water quality (Groundwater Regulations 1998). An assessment framework for Scotland, (March). https://www.sepa.org.uk/media/34358/evaluating-the-potential-impact-of-opencast-coal-mining-on-water-quality-groundwater-regulations-1998-an-assessment-framework-for-scotland.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Teixeira Cardoso.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1372 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, A.T., Fan, F.M. A first evaluation of water resource conditions after an environmental reclamation effort at a former degraded coal mining area in Southern Brazil. Environ Monit Assess 193, 632 (2021). https://doi.org/10.1007/s10661-021-09393-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09393-4

Keywords

Navigation