Advertisement

Fast and effective simultaneous determination of metals in soil samples by ultrasound-assisted extraction and flame atomic absorption spectrometry: assessment of trace elements contamination in agricultural and native forest soils from Paraná - Brazil

  • Deborah Cristina Crominski da Silva MedeirosEmail author
  • Fabiano Piechontcoski
  • Erica Roberta Lovo da Rocha Watanabe
  • Eduardo Sidinei Chaves
  • Simone Delezuk Inglez
Article
  • 8 Downloads

Abstract

This study proposes a simple and effective method for determination of Al, Cd, Cu, Ni, and Zn in soil samples, associating ultrasound-assisted extraction and flame atomic absorption spectrometry (FAAS). Ultrasound-assisted extraction conditions were optimized using a central composite design. This method required small volumes of HCl, HNO3, and HF as an extraction solvent blend to ensure effective analyte extraction. Limits of detection and quantification were determined to assess the minimum accurate concentration of the studied elements that can be detected and quantified in a soil sample. Therefore, the ultrasound-assisted extraction was concluded as a simple and straightforward pretreatment technique to determine Al, Cd, Cu, Ni, and Zn concentrations in soil samples. Eight sites of agricultural and native forest areas of the city of Ponta Grossa and Guarapuava, State of Paraná, Brazil, were evaluated for metals, and compared with the reference values for trace elements provided by the Brazilian National Environment Council. Environmental assessment of soils from those eight sites was accomplished through Igeo, EF, CF, and PLI parameters, which aimed at the evaluation of agricultural sites in comparison with adjacent natural forest sites with no history of anthropogenic mobilization to determine the degree of the contribution of anthropogenic sources to metal concentrations. According to the Igeo, EF, and CF parameters, all sites were classified as unpolluted to moderately polluted and none or minor enrichment due to anthropogenic activities were noticed. PLI parameter evaluated the concentration of all studied metals in soils to stipulate an order of contamination, which was concluded as site 8 <site 4 <site 3 <site 7 <site 2 <site 6 <site 1 <site 5 for the sites under study.

Keywords

Trace elements Soil Ultrasound-assisted extraction Flame atomic absorption spectrometry Central composite design Environmental analysis 

Notes

Acknowledgments

The authors are grateful to the Department of Chemical Engineering at the Federal University of Technology – Paraná, José Alfredo Santos for supplying the soil samples used in the analytical application, Fundação Araucária, CAPES, CNPq, and Federal University of Santa Catarina.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10661_2020_8065_Fig5_ESM.png (682 kb)
ESM 1

(PNG 681 kb)

10661_2020_8065_MOESM1_ESM.tif (93.8 mb)
High resolution image (TIF 96005 kb)
10661_2020_8065_Fig6_ESM.png (1.3 mb)
ESM 2

(PNG 1348 kb)

10661_2020_8065_MOESM2_ESM.tif (188 mb)
High resolution image (TIF 192485 kb)
10661_2020_8065_Fig7_ESM.png (1.3 mb)
ESM 3

(PNG 1306 kb)

10661_2020_8065_MOESM3_ESM.tif (187.1 mb)
High resolution image (TIF 191599 kb)
10661_2020_8065_Fig8_ESM.png (1.4 mb)
ESM 4

(PNG 1425 kb)

10661_2020_8065_MOESM4_ESM.tif (187.9 mb)
High resolution image (TIF 192418 kb)
10661_2020_8065_Fig9_ESM.png (730 kb)
ESM 5

(PNG 729 kb)

10661_2020_8065_MOESM5_ESM.tif (94 mb)
High resolution image (TIF 96280 kb)

References

  1. Abdullahi, M. S. (2015). Chapter 18 - soil contamination, remediation and plants: prospects and challenges. In: Hakeem, K. R., Sabir, M., Öztürk, M., Mermut, A.R. (Eds.). Soil Remediation and Plants, Academic Press, 525–546,  https://doi.org/10.1016/B978-0-12-799937-1.00018-8.CrossRefGoogle Scholar
  2. Ahmad, W., Najeeb, U., & Zia, M. H. (2015). Chapter 2 - soil contamination with metals: sources, types and implications. In K. R. Hakeem, M. Sabir, M. Öztürk, & A. R. Mermut (Eds.), Soil remediation and plants (pp. 37–61). San Diego: Academic Press.  https://doi.org/10.1016/B978-0-12-799937-1.00002-4.CrossRefGoogle Scholar
  3. Ali, L., Rashid, A., Khattak, S. A., Zeb, M., Jehan, S. (2019). Geochemical control of potential toxic elements (PTEs), associated risk exposure and source apportionment of agricultural soil in Southern Chitral, Pakistan. Microchemical Journal. 147, 516–523,  https://doi.org/10.1016/j.microc.2019.03.034.CrossRefGoogle Scholar
  4. Alloway, B. J. (1995). Heavy metals in soils. Londres: Blackie Acad. Prof.CrossRefGoogle Scholar
  5. Antony, J. (2014). 4 - a systematic methodology for design of experiments. In: Antony, J. (Ed.). Design of experiments for engineers and scientists (second edition), Elsevier, 33-50,  https://doi.org/10.1016/B978-0-08-099417-8.00004-3.CrossRefGoogle Scholar
  6. Baltas, H., Sirin, M., Gökbayrak, E., Ozcelik, A. E. (2020). A case study on pollution and a human health risk assessment of heavy metals in agricultural soils around Sinop province, Turkey. Chemosphere. 241.  https://doi.org/10.1016/j.chemosphere.2019.125015.CrossRefGoogle Scholar
  7. Bendicho C., Lavilla, I. (2013). Ultrasound-assisted metal extractions. In: Reedijk, J. (Ed.) Reference module in chemistry, Molecular Sciences and Chemical Engineering, Elsevier, Amsterdam,  https://doi.org/10.1016/B978-0-12-409547-2.04953-2.Google Scholar
  8. Bettinelli, M., Beone, G. N., Spezia, S., & Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Analytica Chimica Acta, 424(2).  https://doi.org/10.1016/S0003-2670(00)01123-5.CrossRefGoogle Scholar
  9. Brasil. (2009). Resolução no 420, de 28 de dezembro de 2009. In Publicado no DOU n o 249, de 30/12/2009. Conselho Nacional do: Meio Ambiente (CONAMA).Google Scholar
  10. Cachada, A., Rocha-Santos, T., & Duarte, A. C. (2018). Chapter 1 - soil and pollution: an introduction to the Main issues (pp. 1–28). Soil pollution: Academic Press.  https://doi.org/10.1016/B978-0-12-849873-6.00001-7.CrossRefGoogle Scholar
  11. Callao, M. P. (2014). Multivariate experimental design in environmental analysis. TrAC, Trends Analytical Chemistry, 62, 86–92.  https://doi.org/10.1016/j.trac.2014.07.009.CrossRefGoogle Scholar
  12. Castro, L., Capote, F. P. (Ed.). (2007). Chapter 3 ultrasound-assisted sample digestion. In: Techniques and instrumentation in analytical chemistry, Elsevier, 26, 69–97,  https://doi.org/10.1016/S0167-9244(07)80019-9.
  13. Doula, M. K., Sarris, A. (2016). Chapter 4 - soil environment. In: Poulopoulos, S. G., Inglezakis, V. J. (Ed). Environment and development, 213-286,  https://doi.org/10.1016/B978-0-444-62733-9.00004-6 CrossRefGoogle Scholar
  14. Frena, M., Quadros, D. P. C., Castilho, I. N. B., Gois, J. S., Borges, D. L. G., Welz, B., & Madureira, L. A. S. (2014). A novel extraction-based procedure for the determination of trace elements in estuarine sediment samples by ICP-MS. Microchemical Journal, 117, 1–6.  https://doi.org/10.1016/j.microc.2014.05.014.CrossRefGoogle Scholar
  15. Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.  https://doi.org/10.1016/0043-1354(80)90143-8.CrossRefGoogle Scholar
  16. IUPAC. (1978). Nomenclature, symbols, units and their usage in spectrochemical analysis—II: data interpretation analytical chemistry division. Spectrochimica Acta Part B, 33(6), 241–245.  https://doi.org/10.1016/0584-8547(78)80044-5.CrossRefGoogle Scholar
  17. Kabata-Pendias, A. (2000). Trace elements in soils and plants. 3ed., CRC press, Boca Raton,  https://doi.org/10.1201/9781420039900 CrossRefGoogle Scholar
  18. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. New York: Springer.CrossRefGoogle Scholar
  19. Kazi, T. G., Afridi, H. I., Bhatti, M., & Akhtar, A. (2019). A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: a multivariate study. Ultrasonics Sonochemistry, 51, 40–48.  https://doi.org/10.1016/j.ultsonch.2018.10.016.CrossRefGoogle Scholar
  20. Klaassen, C. D. (2008). Unit 5 – toxic agents. In: Klaassen, C. D. (Ed). Casarett & Doull’s toxicology: the basic science of poisons, 7 ed., McGraw-Hill, 881-111.Google Scholar
  21. Kline, W. E., & Fogler, H. S. (1981). Dissolution kinetics: catalysis by strong acids. Journal of Colloid Interface Sciences, 82(1).  https://doi.org/10.1016/0021-9797(81)90127-2.CrossRefGoogle Scholar
  22. La Calle, I., Cabaleiro, N., Costas, M., Pena, F., Gil, S., Lavilla, I., & Bendicho, C. (2011). Ultrasound-assisted extraction of gold and silver from environmental samples using different extractants followed by electrothermal-atomic absorption spectrometry. Microchemical Journal, 97(2), 93–100.  https://doi.org/10.1016/j.microc.2010.07.011.CrossRefGoogle Scholar
  23. Lasat, M. M. (2000). Phytoextraction of metals from contaminated soil: a review of plant/soil/metal interaction and assessment of pertinent agronomic issues. Journal of Hazardous Substance Research., 2(5), 1–25.Google Scholar
  24. Li, H., Qian, X., Hu, W., Wang, Y., Gao, H. (2013). Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing, SE China. Science of the Total Environment. 456-457, 212–221,  https://doi.org/10.1016/j.scitotenv.2013.03.094.CrossRefGoogle Scholar
  25. Li, X., Zhang, J., Gong, Y., Liu, Q., Yang, S., Ma, J., Zhao, L., & Hou, H. (2020). Status of copper accumulation in agricultural soils across China (1985–2016). Chemosphere., 244.  https://doi.org/10.1016/j.chemosphere.2019.125516.CrossRefGoogle Scholar
  26. Matong, J. M., Nyaba, L., & Nomngongo, P. N. (2016). Fractionation of trace elements in agricultural soils using ultrasound assisted sequential extraction prior to inductively coupled plasma mass spectrometric determination. Chemosphere., 154, 249–257.  https://doi.org/10.1016/j.chemosphere.2016.03.123.CrossRefGoogle Scholar
  27. Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine river. GeoJournal, 2(3), 108–118.Google Scholar
  28. Muller, G. (1981). Die Schwermetallbelastung der Sedimenten des Neckars und Seiner Nebenflüsse. Chemiker-Zeitung, 6, 157–164.Google Scholar
  29. Neto, B. B., Scarminio, I. S., Bruns, R. E. (2010). Como Fazer Experimentos - Aplicações na Ciência e na Indústria, 4 ed., Bookman.Google Scholar
  30. Özdemir, S., Mohamedsaid, S. A., Kılınç, E., & Soylak, M. (2019). Magnetic solid phase extractions of Co(II) and Hg(II) by using magnetized C. micaceus from water and food samples. Food Chemistry., 271, 232–238.  https://doi.org/10.1016/j.foodchem.2018.07.067.CrossRefGoogle Scholar
  31. Paula, C. E. R., Caldas, L. F. S., Brum, D. M., & Cassella, R. J. (2013). Development of a focused ultrasound-assisted extraction method for the determination of trace concentrations of Cr and Mn in pharmaceutical formulations by ETAAS. Journal of Pharmaceutical and Biomedical Analysis, 74, 284–229.  https://doi.org/10.1016/j.jpba.2012.11.013.CrossRefGoogle Scholar
  32. Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrAC, Trends in Analytical Chemistry, 43, 84–99.  https://doi.org/10.1016/j.trac.2012.12.005.CrossRefGoogle Scholar
  33. Rubio, B., Nombela, M. A., & Vilas, F. (2000). Geochemistry of major and trace elements in sediments of the Ria de Vigo (NW Spain): an assessment of metal pollution. Marine Pollution Bulletin, 40(11), 968–980.  https://doi.org/10.1016/S0025-326X(00)00039-4.CrossRefGoogle Scholar
  34. Rutkowska, M., Namieśnik, J., Konieczka, P. (2017). Chapter 10 - ultrasound-assisted extraction. In: Pena-Pereira, F.; Tobiszewski, M. The application of green solvents in separation processes, Elsevier, 301-324,  https://doi.org/10.1016/B978-0-12-805297-6.00010-3 CrossRefGoogle Scholar
  35. Santos, S. N., & Alleoni, L. (2013). Reference values for heavy metals in soils of the Brazilian agricultural frontier in Southwestern Amazônia. Environmental Monitoring and Assessment., 185, 5737–5748.  https://doi.org/10.1007/s10661-012-2980-7.CrossRefGoogle Scholar
  36. Saucedo-Velez, A. A., Hinojosa-Reyes, L., Villanueva-Rodríguez, M., Caballero-Quintero, A., Hernández-Ramírez, A., & Guzmán-Mar, J. L. (2017). Speciation analysis of organoarsenic compounds in livestock feed by microwave-assisted extraction and high performance liquid chromatography coupled to atomic fluorescence spectrometry. Food Chemistry., 232, 493–500.  https://doi.org/10.1016/j.foodchem.2017.04.012.CrossRefGoogle Scholar
  37. Skoog, A. D., West, D. M., Holler, F. J., & Crouch, R. S. (2006). Fundamentos de Química Analítica. São Paulo: Editora Thomson.Google Scholar
  38. Tadeo, J. L., Sánchez-Brunete, C., Albero, B., & García-Valcárcel, A. I. (2010). Application of ultrasound-assisted extraction to the determination of contaminants in food and soil samples. Journal of Chromatography A., 1217(16), 2415–2440.  https://doi.org/10.1016/j.chroma.2009.11.066.CrossRefGoogle Scholar
  39. Tazaki, K., Lindenmayer, Z. G., & Fyfe, W. S. (1988). Formation of ultra-thin Cu/1bS films on minerals, a weathering product from silicate-facies iron formation, Salobo, Carajas, Brazil. Chemical Geology., 67(3–4), 285–294.  https://doi.org/10.1016/0009-2541(88)90134-9.CrossRefGoogle Scholar
  40. Tiwari, B. K. (2015). Ultrasound: a clean, green extraction technology. TrAC, Trends in Analytical Chemistry., 71.  https://doi.org/10.1016/j.trac.2015.04.013.CrossRefGoogle Scholar
  41. Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in assessment of heavy metals in estuaries and the formation of pollution index. Helgoland Marine Research., 33, 566–575.  https://doi.org/10.1007/BF02414780.CrossRefGoogle Scholar
  42. Wang, J., & Chen, C. (2006). Biosorbents for heavy metals removal and their future. Biotechnology Advances., 27(2), 195–226.  https://doi.org/10.1016/j.biotechadv.2006.03.001.CrossRefGoogle Scholar
  43. Yan, G., Mao, L., Liu, S., Mao, Y., Ye, H., Huang, T., Li, F.; Chen, L. (2018). Enrichment and sources of trace metals in roadside soils in Shanghai, China: a case study of two urban/rural roads. Science of the Total Environment. 631-632, 942–950,  https://doi.org/10.1016/j.scitotenv.2018.02.340.CrossRefGoogle Scholar
  44. Yang, P., Zhou, R., Zhang, W., Yi, R., Tang, S., Guo, L., Hao, Z., Li, X., Lu, Y., & Zeng, X. (2019). High-sensitivity determination of cadmium and lead in rice using laser-induced breakdown spectroscopy. Food Chemistry., 272, 323–328.  https://doi.org/10.1016/j.foodchem.2018.07.214.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Deborah Cristina Crominski da Silva Medeiros
    • 1
    Email author
  • Fabiano Piechontcoski
    • 1
  • Erica Roberta Lovo da Rocha Watanabe
    • 1
  • Eduardo Sidinei Chaves
    • 2
  • Simone Delezuk Inglez
    • 1
  1. 1.Department of Chemical EngineeringFederal University of Technology – Paraná (UTFPR)Ponta GrossaBrazil
  2. 2.Department of ChemistryFederal University of Santa Catarina (UFSC)FlorianópolisBrazil

Personalised recommendations