Advertisement

Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): an epitomised review

  • Deep Raj
  • Subodh Kumar MaitiEmail author
Article

Abstract

The release of potentially toxic metal(loid)s (PTMs) such as As, Cd, Cr, Pb and Hg has become a serious threat to the environment. The anthropogenic contribution of these PTMs, especially Hg, is increasing continuously, and coal combustion in thermal power plants (TPPs) is considered to be the highest contributor of PTMs. Once entered into the environment, PTMs get deposited on the soil, which is the most important sink of these PTMs. This review centred on the sources of PTMs from coal and flyash and their enrichment in soil, chemical behaviour in soil and plant, bioaccumulation in trees and vegetables, health risk and remediation. Several remediation techniques (physical and chemical) have been used to minimise the PTMs level in soil and water, but the phytoremediation technique is the most commonly used technique for the effective removal of PTMs from contaminated soil and water. Several plant species like Brassica juncea, Pteris vittata and Helianthus annuus are proved to be the most potential candidate for the PTMs removal. Among all the PTMs, the occurrence of Hg in coal is a global concern due to the significant release of Hg into the atmosphere from coal-fired thermal power plants. Therefore, the Hg removal from pre-combustion (coal washing and demercuration techniques) coal is very essential to reduce the possibility of Hg release to the atmosphere.

Keywords

Potentially toxic metal(loid)s Mercury Coal and flyash Plants and vegetables Phytoremediation 

Notes

Acknowledgements

The authors are grateful to the Ministry of Human Resource Development (MHRD, Government of India) for providing research fellowship to the first author (D.R.). The authors also acknowledge Indian Institute of Technology (Indian School of Mines), Dhanbad (India) for providing basic research facilities.

References

  1. Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40, 828–846.CrossRefGoogle Scholar
  2. Adriano, D. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals. New York: Springer.CrossRefGoogle Scholar
  3. Ahluwalia, S. S., & Goyal, D. (2005). Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in Life Sciences, 5, 158–162.CrossRefGoogle Scholar
  4. Ahmann, D., Krumholz, L., Hemond, H., Lovley, D., & Morel, F. (1997). Microbial mobilization of arsenic from sediments of the Aberjona watershed. Environmental Science and Technology, 31, 2923–2930.CrossRefGoogle Scholar
  5. Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental Pollution (vol 22). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  6. Alpaslan, B., & Yukselen, M. A. (2002). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil Pollution, 133, 253–263.CrossRefGoogle Scholar
  7. Alvarado, S., Guédez, M., Lué-Merú, M. P., Nelson, G., Alvaro, A., Jesús, A. C., & Gyula, Z. (2008). Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresource Technology, 99, 8436–8440.Google Scholar
  8. Antoine, J. M., Fung, L. A. H., & Grant, C. N. (2017). Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology Reports, 4, 181–18.7.CrossRefGoogle Scholar
  9. Aransiola, S.A., Ijah, U.J.J. and Abioye, O.P. (2013). Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science. http://dx.doi.org/10.1155/2013/631619.CrossRefGoogle Scholar
  10. Arazi, T., Sunkar, R., Kaplan, B., & Fromm, H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant Journal, 20, 171–182.CrossRefGoogle Scholar
  11. Arias, J. A., Peralta-Videa, J. R., Ellzey, J. T., Ren, M., Viveros, M. N., & Gardea-Torresdey, J. L. (2010). Effects of Glomus deserticola inoculation on Prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany, 68, 139–148.Google Scholar
  12. Arikpo, G. E., Eja, M. E., Ogbonnaya, L. O., & Opara, A. A. (2004). Cadmium uptake by the green alga Chlorella emersonii. Global Journal of Pure and Applied Sciences, 10, 257–262.CrossRefGoogle Scholar
  13. ASTM. (2006). ASTM D6414: Standard test methods for total mercury in coal and coal combustion residues by acid extraction or wet oxidation/cold vapour atomic absorptionGoogle Scholar
  14. Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9, 660.CrossRefGoogle Scholar
  15. Augustine, A. U., Onwuka, J. C., & Albert, C. Q. (2016). Determination of heavy metal concentration in Neem (Azadirachta indica) leaves, bark and soil along some major roads in Lafia, Nasarawa state Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 8, 38–43.CrossRefGoogle Scholar
  16. Augustsson, A., Uddh-Söderberg, T., Filipsson, M., Helmfrid, I., Berglund, M., Karlsson, H., Hogmalm, J., Karlsson, A., & Alriksson, S. (2018). Challenges in assessing the health risks of consuming vegetables in metal-contaminated environments. Environment International, 113, 269–280.CrossRefGoogle Scholar
  17. Bai, X., Li, W., Chen, Y., et al. (2007). The general distributions of trace elements in Chinese coals. Coal Quality Technology, 1, 1–4 (in Chinese with English abstract).Google Scholar
  18. Barros Júnior, L. M., Macedo, G. R., Duarte, M. M. L., Silva, E. P., & Lobato, A. K. C. L. (2003). Biosorption of cadmium using the fungus Aspergillus niger. Brazilian Journal of Chemical Engineering, 20, 229–239.Google Scholar
  19. Bartoňová, L., Klika, Z., & Spears, D. A. (2007). Characterization of unburned carbon from ash after bituminous coal and lignite combustion in CFBs. Fuel, 86, 455–463.CrossRefGoogle Scholar
  20. Basha, A. M., Yasovardhan, N., Satyanarayana, S. V., Reddy, G. V. S., & Kumar, A. V. (2014). Trace metals in vegetables and fruits cultivated around the surroundings of Tummalapalle uranium mining site, Andhra Pradesh, India. Toxicology Reports, 1, 505–512.CrossRefGoogle Scholar
  21. Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173, 384–392.CrossRefGoogle Scholar
  22. Bidar, G., Waterlot, C., Verdin, A., Proix, N., Courcot, D., Détriché, S., Fourrier, H., Richard, A., & Douay, F. (2016). Sustainability of an in situ aided phytostabilisation on highly contaminated soils using fly ashes: Effects on the vertical distribution of physicochemical parameters and trace elements. Journal of Environmental Management, 171, 204–216.CrossRefGoogle Scholar
  23. Bower, J., Savage, K. S., Weinman, B., Barnett, M. O., Hamilton, W. P., & Harper, W. F. (2008). Immobilization of mercury by pyrite (FeS2). Environmental Pollution, 156, 504–514.CrossRefGoogle Scholar
  24. Brigden, K. and Santillo, D. (2002). Heavy metal and metalloid content of fly ash collected from the Sual, Mauban and Masinloc coal-fired power plants in the Philippines, 2002. Greenpeace AraştırmaLaboratuarıTeknikNotu, 7.Google Scholar
  25. Brown, S. L., Chaney, R. L., Angle, J. S., & Baker, A. J. M. (1994). Phytoremediation potential of Thlaspicaerulescens and bladder campion for zinc- and cadmium-contaminated soil. Journal of Environmental Quality, 23, 1151–1157.CrossRefGoogle Scholar
  26. Cheng, S. F., Huang, C. Y., Lin, Y. C., Lin, S. C., & Chen, K. L. (2015). Phytoremediation of lead using corn in contaminated agricultural land—An in situ study and benefit assessment. Ecotoxicology and Environmental Safety, 111, 72–77.CrossRefGoogle Scholar
  27. Choong, T. S. Y., Chuah, T., Robiah, Y., Gregory Koay, F., & Azni, I. (2007). Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination, 217, 139–166.CrossRefGoogle Scholar
  28. CoŞKun, M., Steinnes, E., Frontasyeva, M. V., Sjobakk, T. E., & Demkina, S. (2006). Heavy metal pollution of surface soil in the Thrace region, Turkey. Environmental Monitoring and Assessment, 119, 545–556.CrossRefGoogle Scholar
  29. Dai, S., & Ren, D. (2007). Effects of magmatic intrusion on mineralogy and geochemistry of coals from the Fengfeng–Handan coalfield, Hebei, China. Energy & Fuels, 21, 1663–1673.Google Scholar
  30. Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: Realism and synergies. International Journal of Phytoremediation, 11, 97–114.CrossRefGoogle Scholar
  31. Douay, F., Roussel, H., Fourrier, H., Heyman, C., & Chateau, G. (2007). Investigation of heavy metal concentrations on urban soils, dust and vegetables nearby a former smelter site in Mortagne du Nord, northern France. Journal of Soils and Sediments, 7, 143–146.CrossRefGoogle Scholar
  32. Dumat, C., Quenea, K., Bermond, A., Toinen, S., & Benedetti, M. F. (2006). Study of the trace metal ion influence on the turnover of soil organic matter in cultivated contaminated soils. Environmental Pollution, 142, 521–529.CrossRefGoogle Scholar
  33. Dziok, T. and Strugała, A. (2017). Method selection for mercury removal from hard coal. In E3S Web of Conferences, EDP Sciences, 14, 02007.CrossRefGoogle Scholar
  34. EA. (2009). Contaminants in soil: Updated collation of toxicological data and intake values for humans. Mercury. Science Report SC050021/SR TOX7. Bristol: Environment Agency.Google Scholar
  35. Emsley, J. (2001). Chromium. Nature’s building blocks: An A–Z guide to the elements. Oxford: Oxford University Press.Google Scholar
  36. Erickson, T.B., Ahrens, W.R., Aks, S., Baum, C. and Ling, L. (2005). Pediatric toxicology: Diagnosis and management of the poisoned child. McGraw Hill Professional.Google Scholar
  37. Fayiga, A. O., Ipinmoroti, M. O., & Chirenje, T. (2018). Environmental pollution in Africa. Environment, Development and Sustainability, 20, 41–73.CrossRefGoogle Scholar
  38. Finkelman, R. B. (1993). Trace and minor elements in coal. In Organic geochemistry (pp. 593–607). New York: Springer.CrossRefGoogle Scholar
  39. Fitz, W., & Wenzel, W. (2002). Arsenic transformations in the soil–rhizosphere–plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.CrossRefGoogle Scholar
  40. Font, O., Córdoba, P., Leiva, C., Romeo, L. M., Bolea, I., Guedea, I., Moreno, N., Querol, X., Fernandez, C., & Díez, L. I. (2012). Fate and abatement of mercury and other trace elements in a coal fluidised bed oxy combustion pilot plant. Fuel, 95, 272–281.CrossRefGoogle Scholar
  41. Galbreath, K. C., & Zygarlicke, C. J. (2000). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65, 289–310.CrossRefGoogle Scholar
  42. Galunin, E., Ferreti, J., Zapelini, I., Vieira, I., Tarley, C. R. T., Abrão, T., & Santos, M. J. (2014). Cadmium mobility in sediments and soils from a coal mining area on Tibagi River watershed: Environmental risk assessment. Journal of Hazardous Materials, 265, 280–287.CrossRefGoogle Scholar
  43. Ginn, B. R., Szymanowski, J. S., & Fein, J. B. (2008). Metal and proton binding onto the roots of Fescue rubra. Chemical Geology, 253, 130–135.Google Scholar
  44. Gowd, S. S., Reddy, M. R., & Govil, P. K. (2010). Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. Journal of Hazardous Materials, 174, 113–121.CrossRefGoogle Scholar
  45. Grover, P., Rekhadevi, P. V., Danadevi, K., Vuyyuri, S. B., Mahboob, M., & Rahman, M. F. (2010). Genotoxicity evaluation in workers occupationally exposed to lead. International Journal of Hygiene and Environmental Health, 213, 99–106.CrossRefGoogle Scholar
  46. Guerra, F., Trevizam, A. R., Muraoka, T., Marcante, N. C., & Canniatti-Brazaca, S. G. (2012). Heavy metals in vegetables and potential risk for human health. Scientia Agricola, 69, 54–60.CrossRefGoogle Scholar
  47. Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, Northwest Bangladesh. Arabian Journal of Geosciences, 8, 3391–3401.CrossRefGoogle Scholar
  48. Hou, W., Chen, X., Song, G., Wang, Q., & Chang, C. C. (2007). Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiology and Biochemistry, 45, 62–69.Google Scholar
  49. Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631, 1–12.CrossRefGoogle Scholar
  50. Ito, S., Yokoyama, T., & Asakura, K. (2006). Emissions of mercury and other trace elements from coal-fired power plants in Japan. Science of the Total Environment, 368, 397–402.CrossRefGoogle Scholar
  51. Iwashita, A., Tanamachi, S., Nakajima, T., Takanashi, H., & Ohki, A. (2004). Removal of mercury from coal by mild pyrolysis and leaching behavior of mercury. Fuel, 83, 631–638.CrossRefGoogle Scholar
  52. Jambhulkar, H. P., & Juwarkar, A. A. (2009). Assessment of bioaccumulation of heavy metals by different plant species grown on fly ash dump. Ecotoxicology and Environmental Safety, 72, 1122–1128.CrossRefGoogle Scholar
  53. James, B. R. (1996). The challenge of remediating chromium-contaminated soil. Environmental Science and Technology, 30, 248–251.CrossRefGoogle Scholar
  54. Jang, Y.C., Somanna, Y. and Kim, H. (2016). Source, distribution, toxicity and remediation of arsenic in the environment—A review. International Journal of Applied Environmental Sciences, 11559-581.Google Scholar
  55. Jenkins, D. (1980). Biological monitoring of toxic trace metals. Toxic trace metals in plants and animals of the world. Part I (Vol. 2). Las Vegas: U.S. Environmental Protection Agency.Google Scholar
  56. Jiang, W., Liu, D., & Hou, W. (2001). Hyperaccumulation of cadmium by roots, bulbs and shoots of garlic (Allium sativum L.). Bioresource Technology, 76, 9–13.Google Scholar
  57. Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.Google Scholar
  58. Kahkha, M. R. R., Bagheri, S., Noori, R., Piri, J., & Javan, S. (2017). Examining total concentration and sequential extraction of heavy metals in agricultural soil and wheat. Polish Journal of Environmental Studies, 26, 2021–2028.CrossRefGoogle Scholar
  59. Ketris, M. P., & Yudovich, Y. E. (2009). Estimations of Clarkes for carbonaceous biolithes: World averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135–148.CrossRefGoogle Scholar
  60. Kim, J. Y., & Chon, H. T. (2001). Pollution of a water course impacted by acid mine drainage in the Imgok creek of the Gangreung coal field, Korea. Applied Geochemistry, 16, 1387–1396.CrossRefGoogle Scholar
  61. Kirkham, M. B. (2006). Cadmium in plants on polluted soils: Effects of soil factors, hyperaccumulation, and amendments. Geoderma, 137, 19–32.CrossRefGoogle Scholar
  62. Knezevic, M., Stankovic, D., Krstic, B., Nikolic, M. S., & Vilotic, D. (2009). Concentrations of heavy metals in soil and leaves of plant species Paulownia elongata SY Hu and Paulownia fortunei Hemsl. African Journal of Biotechnology, 8, 5422-5429.Google Scholar
  63. Kolker, A., Senior, C., van Alphen, C., Koenig, A., & Geboy, N. (2017). Mercury and trace element distribution in density separates of a south African Highveld (# 4) coal: Implications for mercury reduction and preparation of export coal. International Journal of Coal Geology, 170, 7–13.CrossRefGoogle Scholar
  64. Kopittke, P. M., Asher, C. J., Kopittke, R. A., & Menzies, N. W. (2007). Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata). Environmental Pollution, 150, 280–287.Google Scholar
  65. Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 107, 263–283.CrossRefGoogle Scholar
  66. Koukouzas, N., Ketikidis, C., & Itskos, G. (2011). Heavy metal characterization of CFB-derived coal fly ash. Fuel Processing Technology, 92, 441–446.CrossRefGoogle Scholar
  67. Krzesłowska, M., Lenartowska, M., Samardakiewicz, S., Bilski, H. and Woźny, A. (2010). Lead deposited in the cell wall of Funaria hygrometrica protonemata is not stable–a remobilization can occur. Environmental Pollution, 158, 325-338.CrossRefGoogle Scholar
  68. Kumar, D. and Kumar, D. (2018). Fine coal washing. Sustainable management of coal preparation. Woodhead Publishing. 179–206.  https://doi.org/10.1016/B978-0-12-812632-5.00008-2.CrossRefGoogle Scholar
  69. Lai, H. Y., & Chen, Z. S. (2004). Effects of EDTA on solubility of cadmium, zinc, and lead and their uptake by rainbow pink and vetiver grass. Chemosphere, 55, 421–430.CrossRefGoogle Scholar
  70. Lawal, O. S., Sanni, A. R., Ajayi, I. A., & Rabiu, O. O. (2010). Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead (II) ions onto the seed husk of Calophyllum inophyllum. Journal of Hazardous Materials, 177, 829–835.Google Scholar
  71. Lee, C. S. L., Li, X., Shi, W., Cheung, S. C. N., & Thornton, I. (2006). Metal contamination in urban, suburban, and country park soils of Hong Kong: A study based on GIS and multivariate statistics. Science of the Total Environment, 356, 45–61.CrossRefGoogle Scholar
  72. Li, Y., Yang, L., Ji, Y., Sun, H., & Wang, W. (2009). Quantification and fractionation of mercury in soils from the Chatian mercury mining deposit, southwestern China. Environmental Geochemistry and Health, 31, 617.CrossRefGoogle Scholar
  73. Li, L., Pan, S.W., Hu, J.J., Kuang, J.F., Qi, M., Ye, K. and Tang, N. (2013). Experimental research on fly ash modified adsorption of mercury removal efficiency of flue gas. In Advanced Materials Research, Trans Tech Publications. 800, 132–138.CrossRefGoogle Scholar
  74. Li, Y.J., Wang, Z.K., Qin, F.X., Fang, Z.Q., Li, X.L. and Li, G. (2018). Potentially toxic elements and health risk assessment in farmland systems around high-concentrated arsenic coal mining in Xingren. China Journal of Chemistry. https://doi.org/10.1155/2018/2198176.Google Scholar
  75. Liang, J., & Mao, J. (2015). Source analysis of global anthropogenic lead emissions: Their quantities and species. Environmental Science and Pollution Research, 22, 7129–7138.CrossRefGoogle Scholar
  76. Liu, Z., & Zhang, F. S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of Hazardous Materials, 167, 933–939.CrossRefGoogle Scholar
  77. Loska, K., Wiechula, D., Barska, B., Cebula, E., & Chojnecka, A. (2003). Assessment of arsenic enrichment of cultivated soils in southern Poland. Polish Journal of Environmental Studies, 12, 187–192.Google Scholar
  78. Lugon-Moulin, N., Zhang, M., Gadani, F., Rossi, L., Koller, D., Krauss, M., & Wagner, G. J. (2004). Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Advances in Agronomy, 83, 111–180.Google Scholar
  79. Luo, G., Ma, J., Han, J., Yao, H., Xu, M., Zhang, C., Chen, G., Gupta, R., & Xu, Z. (2013). Hg occurrence in coal and its removal before coal utilization. Fuel, 104, 70–76.CrossRefGoogle Scholar
  80. Ma, J., Yamaji, N., Mitani, N., Xu, X., Su, Y., McGrath, S., & Zhao, F. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, USA, 105, 9931–9935.CrossRefGoogle Scholar
  81. Macur, R., Jackson, C., Botero, L., McDermott, T., & Inskeep, W. (2004). Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environmental Science and Technology, 38, 104–111.CrossRefGoogle Scholar
  82. Madhavi, V., Reddy, A. V. B., Reddy, K. G., Madhavi, G., & Prasad, T. N. K. V. (2013). An overview on research trends in remediation of chromium. Research Journal of Recent Sciences, 2, 71–83.Google Scholar
  83. Maestri, E., Marmiroli, M., Visioli, G., & Marmiroli, N. (2010). Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environmental and Experimental Botany, 68, 1–13.CrossRefGoogle Scholar
  84. Mansour, R. S. (2014). The pollution of tree leaves with heavy metal in Syria. International Journal of ChemTech Research, 6, 2283–2290.Google Scholar
  85. Markowitz, G., & Rosner, D. (2000). “Cater to the children”: The role of the lead industry in a public health tragedy, 1900–1955. American Journal of Public Health, 90, 36.CrossRefGoogle Scholar
  86. Marrugo-Negrete, J., Durango-Hernández, J., Pinedo-Hernández, J., Olivero-Verbel, J., & Díez, S. (2015). Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere, 127, 58–63.CrossRefGoogle Scholar
  87. Masto, R. E., Sheik, S., Nehru, G., Selvi, V. A., George, J., & Ram, L. C. (2015). Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield, India. Solid Earth, 6, 811–821.CrossRefGoogle Scholar
  88. Maya, M., Musekiwa, C., Mthembi, P., & Crowley, M. (2015). Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank), Mpumalanga. South African Journal of Geomatics, 4, 174–188.CrossRefGoogle Scholar
  89. Megalovasilis, P., Papastergios, G., & Filippidis, A. (2013). Behavior study of trace elements in pulverized lignite, bottom ash, and fly ash of Amyntaio power station, Greece. Environmental Monitoring and Assessment, 185, 6071–6076.CrossRefGoogle Scholar
  90. Mirbagherp, S. A., & Hosseini, S. N. (2004). Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse. Desalination, 171, 85–93.CrossRefGoogle Scholar
  91. Mishra, S., Singh, V., Srivastava, S., Srivastava, R., Srivastava, M., Dass, S., Satsang, G., & Prakash, S. (1995). Studies on uptake of trivalent and hexavalent Cr by maize (Zea mays). Food and Chemical Toxicology, 33, 393–397.Google Scholar
  92. Mishra, V. K., Tripathi, B. D., & Kim, K. H. (2009). Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. Journal of Hazardous Materials, 172, 749–754.CrossRefGoogle Scholar
  93. Modabberi, S., Tashakor, M., Soltani, N. S., & Hursthouse, A. S. (2018). Potentially toxic elements in urban soils: Source apportionment and contamination assessment. Environmental Monitoring and Assessment, 190, 715.CrossRefGoogle Scholar
  94. Moreno-Jiménez, E., Esteban, E., & Peñalosa, J. M. (2012). The fate of arsenic in soil–plant systems, In Reviews of environmental contamination and toxicology (pp. 1–37). New York, NY: Springer.CrossRefGoogle Scholar
  95. Murakami, M., Ae, N., & Ishikawa, S. (2007). Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.). Environmental Pollution, 145, 96–103.Google Scholar
  96. Nahar, N., Rahman, A., Nawani, N. N., Ghosh, S., & Mandal, A. (2017). Phytoremediation of arsenic from the contaminated soil using transgenic tobacco plants expressing ACR2 gene of Arabidopsis thaliana. Journal of Plant Physiology, 218, 121–126.Google Scholar
  97. Navas-Acien, A., Guallar, E., Silbergeld, E. K., & Rothenberg, S. J. (2006). Lead exposure and cardiovascular disease—A systematic review. Environmental Health Perspectives, 115, 472–482.CrossRefGoogle Scholar
  98. Niazi, N. K., Bibi, I., Fatimah, A., Shahid, M., Javed, M. T., Wang, H., Ok, Y. S., Bashir, S., Murtaza, B., Saqib, Z. A., & Shakoor, M. B. (2017). Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: Morphological and physiological response. International Journal of Phytoremediation, 19, 670–678.Google Scholar
  99. Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100–107.CrossRefGoogle Scholar
  100. Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., & Wilson, S. (2006). Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, 40, 4048–4063.CrossRefGoogle Scholar
  101. Pagilla, K. R., & Canter, L. W. (1999). Laboratory studies on remediation of chromium-contaminated soils. Journal of Environmental Engineering, 125, 243–248.CrossRefGoogle Scholar
  102. Pantuzzo, F. L., Silva, J. C. J., & Ciminelli, V. S. (2009). A fast and accurate microwave-assisted digestion method for arsenic determination in complex mining residues by flame atomic absorption spectrometry. Journal of Hazardous Materials, 168, 1636–1638.  https://doi.org/10.1016/j.jhazmat.2009.03.005.CrossRefGoogle Scholar
  103. Park, C. H., Eom, Y., Lee, L. J. E., & Lee, T. G. (2013). Simple and accessible analytical methods for the determination of mercury in soil and coal samples. Chemosphere, 93, 9–13.CrossRefGoogle Scholar
  104. Patel, M. J., Patel, J. N., & Subramanian, R. B. (2005). Effect of cadmium on growth and the activity of H2O2 scavenging enzymes in Colocassia esculentum. Plant and Soil, 273, 183–188.Google Scholar
  105. Patel, K. S., Sharma, R., Dahariya, N. S., Yadav, A., Blazhev, B., Matini, L., & Hoinkis, J. (2015). Heavy metal contamination of tree leaves. American Journal of Analytical Chemistry, 6, 687.CrossRefGoogle Scholar
  106. Pietrzykowski, M., Socha, J., & van Doorn, N. S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470, 501–510.CrossRefGoogle Scholar
  107. Pourrut, B., Perchet, G., Silvestre, J., Cecchi, M., Guiresse, M., & Pinelli, E. (2008). Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. Journal of Plant Physiology, 165, 571–579.Google Scholar
  108. Pöykiö, R., Mäkelä, M., Watkins, G., Nurmesniemi, H., & Olli, D. A. H. L. (2016). Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26, 256–264.CrossRefGoogle Scholar
  109. Punamiya, P., Datta, R., Sarkar, D., Barber, S., Patel, M., & Das, P. (2010). Symbiotic role of Glomusmosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. Journal of Hazardous Materials, 177, 465–474.CrossRefGoogle Scholar
  110. Raj, D., & Maiti, S. K. (2019a). Bioaccumulation of potentially toxic elements in tree and vegetable species with associated health and ecological risks: A case study from a thermal power plant, Chandrapura, India. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 649–665.CrossRefGoogle Scholar
  111. Raj, D., & Maiti, S. K. (2019b). Sources, toxicity, and remediation of mercury: An essence review. Environmental Monitoring and Assessment, 191, 566.CrossRefGoogle Scholar
  112. Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23, 767–787.CrossRefGoogle Scholar
  113. Ren, D. Y., Zhao, F. H., Dai, S. F., et al. (2006). Geochemistry of trace elements in coals, pp 268–79. Beijing: The Science Press.Google Scholar
  114. Rensing, C., & Rosen, B. (2009). Biogeocycles for redox-active metal(loids): As, Cu, Mn and Se. In M. Schaechter (Ed.), Encyclopedia of microbiology (pp. 205–219). Oxford: Elsevier.CrossRefGoogle Scholar
  115. Revathi, K., Haribabu, T. E., & Sudha, P. N. (2011). Phytoremediation of chromium contaminated soil using sorghum plant. International Journal of Environmental Sciences, 2, 418.Google Scholar
  116. Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, north eastern India. Environmental Earth Sciences, 73, 5425–5433.CrossRefGoogle Scholar
  117. Ribeiro, J., Da Silva, E. F., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83, 456–466.CrossRefGoogle Scholar
  118. Sadiq, M. (1997). Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water, Air, and Soil Pollution, 93, 117–136.Google Scholar
  119. Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: Current scenario, impact and available techniques for management. Current Pollution Reports, 2, 1–14.CrossRefGoogle Scholar
  120. Salido, A. L., Hasty, K. L., Lim, J. M., & Butcher, D. J. (2003). Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). International Journal of Phytoremediation, 5, 89–103.Google Scholar
  121. Samani, Z., Hu, S., Hanson, A. T., & Heil, D. M. (1998). Remediation of lead contaminated soil by column extraction with EDTA: II. Modeling. Water, Air, and Soil Pollution, 102, 221–238.CrossRefGoogle Scholar
  122. Sampanpanish, P., Pongsapich, W., Khaodhiar, S., & Khan, E. (2006). Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water, Air, & Soil Pollution: Focus, 6, 191–206.CrossRefGoogle Scholar
  123. Saravanan, A., Jayasree, R., Hemavathy, R. V., Jeevanantham, S., Hamsini, S., Kumar, S., Yaashikaa, P. R., Manivasagan, V., & Yuvaraj, D. (2019). Phytoremediation of Cr (VI) ion contaminated soil using black gram (Vigna mungo): Assessment of removal capacity. Journal of Environmental Chemical Engineering, 7, 103052.Google Scholar
  124. Sen, T. K., & Sarzali, M. V. (2008). Adsorption of cadmium metal ion (Cd2+) from its aqueous solution by aluminium oxide and kaolin: A kinetic and equilibrium study. Journal of Environmental Research and Development, 3, 220–227.Google Scholar
  125. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.CrossRefGoogle Scholar
  126. Shukla, A. and Srivastava, S. (2019). A review of phytoremediation prospects for arsenic contaminated water and soil. In Phytomanagement of polluted sites (pp. 243-254). Elsevier.Google Scholar
  127. Singh, R., Singh, S., Parihar, P., Singh, V. P., & Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety, 112, 247–270.CrossRefGoogle Scholar
  128. Sobukola, O. P., Adeniran, O. M., Odedairo, A. A., & Kajihausa, O. E. (2010). Heavy metal levels of some fruits and leafy vegetables from selected markets in Lagos, Nigeria. African Journal of Food Science, 4, 389–393.Google Scholar
  129. Souri, Z., Karimi, N., & de Oliveira, L. M. (2018). Antioxidant enzymes responses in shoots of arsenic hyperaccumulator, Isatis cappadocica Desv., under interaction of arsenate and phosphate. Environmental Technology, 39, 1316–1327.Google Scholar
  130. Srivastava, S., Shrivastava, M., Suprasanna, P., & D'souza, S. F. (2011). Phytofiltration of arsenic from simulated contaminated water using Hydrilla verticillata in field conditions. Ecological Engineering, 37, 1937–1941.Google Scholar
  131. Streets, D. G., Lu, Z., Levin, L., terSchure, A. F., & Sunderland, E. M. (2018). Historical releases of mercury to air, land, and water from coal combustion. Science of the Total Environment, 615, 131–140.CrossRefGoogle Scholar
  132. Su, Y., Han, F. X., Chen, J., Sridhar, B. M., & Monts, D. L. (2008). Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). International Journal of Phytoremediation, 10, 547–560.CrossRefGoogle Scholar
  133. Subirés-Muñoz, J. D., García-Rubio, A., Vereda-Alonso, C., Gómez-Lahoz, C., Rodríguez-Maroto, J. M., García-Herruzo, F., & Paz-Garcia, J. M. (2011). Feasibility study of the use of different extractant agents in the remediation of a mercury contaminated soil from Almaden. Separation and Purification Technology, 79, 151–156.CrossRefGoogle Scholar
  134. Sushil, S., & Batra, V. S. (2006). Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel, 85, 2676–2679.CrossRefGoogle Scholar
  135. Tang, X. Y., & Huang, W. H. (2004). Trace elements in Chinese coal. Beijing: The Commercial Press (In Chinese).Google Scholar
  136. Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.CrossRefGoogle Scholar
  137. Tomasevic, M., Rajsic, S., Dordevic, D., Tasic, M., Krstic, J., & Novakovic, V. (2004). Heavy metals accumulation in tree leaves from urban areas. Environmental Chemistry Letters, 2, 151–154.CrossRefGoogle Scholar
  138. Tu, S., Ma, L. Q., Fayiga, A. O., & Zillioux, E. J. (2004). Phytoremediation of arsenic-contaminated groundwater by the arsenic hyperaccumulating fern Pteris vittata L. International Journal of Phytoremediation, 6, 35–47.CrossRefGoogle Scholar
  139. USEPA. (1996). Method 3050B: Acid digestion of sediments. Sludges and Soils, Revision, p 2.Google Scholar
  140. USEPA, 2007. Treatment technologies for mercury in soil, waste and water, EPA-542-R-07-003.Google Scholar
  141. Uzu, G., Sobanska, S., Aliouane, Y., Pradere, P., & Dumat, C. (2009). Study of lead phytoavailability for atmospheric industrial micronic and sub-micronic particles in relation with lead speciation. Environmental Pollution, 157, 1178–1185.CrossRefGoogle Scholar
  142. Vega, F. A., Andrade, M. L., & Covelo, E. F. (2010). Influence of soil properties on the sorption and retention of cadmium, copper and lead, separately and together, by 20 soil horizons: Comparison of linear regression and tree regression analyses. Journal of Hazardous Materials, 174, 522–533.CrossRefGoogle Scholar
  143. Verma, S. K., Masto, R. E., Gautam, S., Choudhury, D. P., Ram, L. C., Maiti, S. K., & Maity, S. (2015). Investigations on PAHs and trace elements in coal and its combustion residues from a power plant. Fuel, 162, 138–147.CrossRefGoogle Scholar
  144. Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 118, 453–461.CrossRefGoogle Scholar
  145. Wang, H. H., Shan, X. Q., Wen, B., Owens, G., Fang, J., & Zhang, S. Z. (2007). Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environmental and Experimental Botany, 61, 246–253.CrossRefGoogle Scholar
  146. Wang, J., Feng, X., Anderson, C. W., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites—a review. Journal of Hazardous Materials, 221, 1–18.Google Scholar
  147. WHO (1993). Guidelines for drinking-water quality. Vol. 1: Recommendations. 2d ed. Geneva. Accessed 11 Feb 2019.Google Scholar
  148. Xu, M., Yan, R., Zheng, C., Qiao, Y., Han, J., & Sheng, C. (2004). Status of trace element emission in a coal combustion process: A review. Fuel Processing Technology, 85, 215–237.Google Scholar
  149. Xue, P., Yan, C., Sun, G., & Luo, Z. (2012). Arsenic accumulation and speciation in the submerged macrophyte Ceratophyllum demersum L. Environmental Science and Pollution Research, 19, 3969–3976.Google Scholar
  150. Yan, J., Quan, G., & Ding, C. (2013). Effects of the combined pollution of lead and cadmium on soil urease activity and nitrification. Procedia Environmental Sciences, 18, 78–83.CrossRefGoogle Scholar
  151. Yan, H., Gao, Y., Wu, L., Wang, L., Zhang, T., Dai, C., Xu, W., Feng, L., Ma, M., Zhu, Y. G., & He, Z. (2019). Potential use of the Pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. Journal of Hazardous Materials, 368, 386–396.CrossRefGoogle Scholar
  152. Yang, Z., Fang, Z., Zheng, L., Cheng, W., Tsang, P. E., Fang, J., & Zhao, D. (2016). Remediation of lead contaminated soil by biochar-supported nano-hydroxyapatite. Ecotoxicology and Environmental Safety, 132, 224–230.CrossRefGoogle Scholar
  153. Yao, D. X., Meng, J., & Zhang, Z. G. (2010). Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. Journal of Coal Science and Engineering (China), 16, 316–319.CrossRefGoogle Scholar
  154. Ye, W. L., Khan, M. A., McGrath, S. P., & Zhao, F. J. (2011). Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159, 3739–3743.CrossRefGoogle Scholar
  155. Yuan, Z., Yi, H., Wang, T., Zhang, Y., Zhu, X., & Yao, J. (2017). Application of phosphate solubilizing bacteria in immobilization of Pb and Cd in soil. Environmental Science and Pollution Research, 24, 21877–21884.CrossRefGoogle Scholar
  156. Yudovich, Y. E., & Ketris, M. P. (2005). Mercury in coal: a review Part 2. Coal use and environmental problems. International Journal of Coal Geology, 62, 135–165.CrossRefGoogle Scholar
  157. Zayed, A. M., & Terry, N. (2003). Chromium in the environment: Factors affecting biological remediation. Plant and Soil, 249, 139–156.CrossRefGoogle Scholar
  158. Zhai, M., Totolo, O., Modisi, M. P., Finkelman, R. B., Kelesitse, S. M., & Menyatso, M. (2009). Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health, 31, 759.CrossRefGoogle Scholar
  159. Zhang, X., Zhao, F. J., Huang, Q., Williams, P. N., Sun, G. X., & Zhu, Y. G. (2009). Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytologist, 182, 421–428.CrossRefGoogle Scholar
  160. Zhitkovich, A. (2011). Chromium in drinking water: Sources, metabolism, and cancer risks. Chemical Research in Toxicology, 24, 1617–1629.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Environmental Science and EngineeringIndian Institute of Technology (Indian School of Mines)DhanbadIndia

Personalised recommendations