Climate-environment-water: integrated and non-integrated approaches to reservoir operation

  • Elahe Fallah-Mehdipour
  • Omid Bozorg-HaddadEmail author
  • Hugo A. Loáiciga


Integrated water planning and management face multiple challenges, among which are the competing interests of several water-using sectors and changing climatic trends. This paper presents integrated and non-integrated climate-environment-water approaches for reservoir operation, illustrated with Karkhe reservoir, Iran. Reservoir operation objectives are meeting municipal, environmental, and agricultural water demands. Results show the integrated approach, which relies on multi-objective optimization of municipal, environmental, and agricultural water supply, improves the municipal, environmental, and agricultural objectives by 70, 32, and 65% compared with the objectives’ values achieved with the non-integrated approach, which implements a standard operating policy.


Climate-environment-water Integrated approaches Non-integrated approaches Reservoir operation 


Funding information

This research received financial support from the National Elites Foundation and Iran’s National Science Foundation (INSF).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abrahão, R., García-Garizábal, I., Merchán, D., & Causapé, J. (2015). Climate change and the water cycle in newly irrigated areas. Environmental Monitoring and Assessment, 187, 22.CrossRefGoogle Scholar
  2. Aiwen, Y. (2000). Impact of global climate change on China’s water resources. Environmental Monitoring and Assessment, 61(1), 187–191.CrossRefGoogle Scholar
  3. Conly, F. M., & Kamp, G. (2001). Monitoring the hydrology of Canadian prairie wetlands to detect the effects of climate change and land use changes. Environmental Monitoring and Assessment, 67(1–2), 195–215.CrossRefGoogle Scholar
  4. Croke, B.F.W. and Jakeman, A.J. (2008). "Use of the IHACRES rainfall-runoff model in arid and semi arid regions." Workshop of the National Institute of Hydrology, Roorkee, India, 28 February- 5 March.Google Scholar
  5. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. England: Wiley.Google Scholar
  6. Fallah-Mehdiour, E., Bozorg Haddad, O., Rezapour Tabari, M. M., & Marino, M. M. (2012). Extraction of decision alternatives in construction management projects: application and adaptation of NSGA-II and MOPSO. Expert Systems with Applications, 39, 2794–2803.CrossRefGoogle Scholar
  7. Fujino, J., Nair, R., Kainuma, M., Masui, T., & Matsuoka, Y. (2006). Multi-gas mitigation analysis on stabilization scenarios using aim global model. Energy Journal, 343–353.Google Scholar
  8. Goodarzi, M., Abedi-Koupai, J., Heidarpour, M., & Safavi, H. M. (2016). Evaluation of the effects of climate change on groundwater recharge using a hybrid method. Water Resources Management, 30(1), 133–148.CrossRefGoogle Scholar
  9. Krol, M. S., Vries, M. J., Oel, P. R., & Araújo, J. C. (2011). Sustainability of small reservoirs and large scale water availability under current conditions and climate change. Water Resources Management, 25(12), 3017–3026.CrossRefGoogle Scholar
  10. Krysanova, V., Dickens, C., Timmerman, J., Varela-Ortega, C., Schlüter, K., Roest, K., Huntjens, P., Jaspers, F., Buiteveld, H., Moreno, E., Pedraza Carrera, J., Slámová, R., Martínková, M., Blanco, I., Esteve, P., Pringle, K., Pahl-Wostl, C., & Kabat, P. (2010). Cross-comparison of climate change adaptation strategies across large river basins in Europe, Africa and Asia. Water Resources Management, 24(14), 4121–4160.CrossRefGoogle Scholar
  11. Mujumdar, P. P. (2013). Climate change: a growing challenge for water management in developing countries. Water Resources Management, 27(4), 953–954.CrossRefGoogle Scholar
  12. Rashid, M. U., Latif, A., & Azmat, M. (2018). Optimizing irrigation deficit of multipurpose cascade reservoirs. Water Resources Management, 32(5), 1675–1687.CrossRefGoogle Scholar
  13. Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., Kindermann, G., Nakicenovic, N., & Rafaj, P. (2011). RCP 8.5- a scenario of comparatively high greenhouse gas emissions. Journal of Climatic Change, 33–109.Google Scholar
  14. Sarzaeim, P., Bozorg-Haddad, O., Fallah-Mehdipour, E., & Loáiciga, H. A. (2017a). Environmental water demand assessment under climate change conditions. Environmental Monitoring and Assessment, 189–359.Google Scholar
  15. Sarzaeim, P., Bozorg Haddad, O., Fallah-Mehdipour, E., & Loáiciga, A. H. (2017b). Climate change outlook for water resources management in a semiarid river basin: the effect of the environmental water demand. Environmental Earth Sciences, 76, 498.CrossRefGoogle Scholar
  16. Sarzaeim, P., Bozorg Haddad, O., Fallah-Mehdipour, E., Zolghadr-Asli, B., & Loaciaga, A. H. (2018). Optimization of run-of-river hydropower plant design under climate change conditions. Water Resources Management, 32(12), 3919–3934.CrossRefGoogle Scholar
  17. Shiau, J. T. (2003). Water release policy effects on the shortage characteristics for the Shihmen Reservoir system during droughts. Water Resources Management, 17(6), 463–480.CrossRefGoogle Scholar
  18. Shiau, J. T., Hung, Y.-N., & Sie, H.-E. (2018). Effects of hedging factors and fuzziness on shortage characteristics during droughts. Water Resources Management, 32(5), 1913–1929.CrossRefGoogle Scholar
  19. Tennant, D. L. (1976). Instream flow regimens for fish, wildlife, recreation and related environmental resources. Fisheries, 1(4), 6–10.CrossRefGoogle Scholar
  20. Thomson, A. M., Calvin, K. V., Smith, S. J., Page Kyle, G., Volke, A., Patel, P., Delgado-Arias, S., Bond-Lamberty, B., Wise, M. A., Clarke, L. E., & Edmonds, J. A. (2011). RCP 4.5: a pathway for stabilization of radiative forcing by 2100. Journal of Climatic Change, 77–109.Google Scholar
  21. Tramblay, Y., Jarlan, L., Hanich, L., & Somot, S. (2018). Future scenarios of surface water resources availability in North African dams. Water Resources Management, 32(4), 1291–1306.CrossRefGoogle Scholar
  22. Van-Vuuren, D., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., Hurtt, G., Kram, T., Krey, V., Lamarque, J. F., Masui, T., Meinhausen, M., Nakicenovic, N., Smith, S., & Rose, S. K. (2011). The representative concentration pathways: an overview. Journal of Climate Change, 109, 5–31.CrossRefGoogle Scholar
  23. Veijalainen, N., Dubrovin, T., Marttunen, M., & Vehviläinen, B. (2010). Climate change impacts on water resources and lake regulation in the Vuoksi Watershed in Finland. Water Resources Management, 24(13), 3437–3459.CrossRefGoogle Scholar
  24. Wayne, G.P. (2013). "The beginner’s guide to representative concentration pathways." Skeptical Science.Google Scholar
  25. Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P.R., Rovere, E-L., and Yohe G. (2009). Report of 2.6 versus 2.9 watts/m2 RCPP evaluation panel. Geneva: IPCC Secretariat.Google Scholar
  26. Wilby, R. L., Dawson, C. W., & Barrow, E. M. (2002). SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling & Software, 17(2), 147–159.CrossRefGoogle Scholar
  27. Wilby, R.L. and Harris, I. (2006). A Framework for Assessing Uncertainties in Climate Change Impacts: Low-Flow Scenarios for the River Thames, UK. Water Resources Research, 42, W02419.Google Scholar
  28. Xu, C.-Y. (2000). Modelling the effects of climate change on water resources in central Sweden. Water Resources Management, 14(3), 177–189.CrossRefGoogle Scholar
  29. Yan, D., Yao, M., Ludwig, F., Kabat, P., Huang, H. Q., Hutjes, R. W. A., & Werners, S. E. (2018). Exploring future water shortage for large river basins under different water allocation strategies. Water Resources Management, 1–16.Google Scholar
  30. Zolghadr-Asli, B., Bozorg Haddad, O., & Chu, X. (2019). Effects of the uncertainties of climate change on the performance of hydropower systems. Journal of Water and Climate Change, 10(3), 591–609.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Elahe Fallah-Mehdipour
    • 1
    • 2
  • Omid Bozorg-Haddad
    • 1
    Email author
  • Hugo A. Loáiciga
    • 3
  1. 1.Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology, College of Agriculture & Natural ResourcesUniversity of TehranKarajIran
  2. 2.National Elites FoundationTehranIran
  3. 3.Department of GeographyUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations