Advertisement

Histopathological alterations in gills of a fish (Astyanax bifasciatus) in neotropical streams: negative effects of riparian forest reduction and presence of pesticides

  • Jardel NimetEmail author
  • Mayara Pereira Neves
  • Natália Prudêncio Viana
  • João Paulo de Arruda Amorim
  • Rosilene Luciana Delariva
Article

Abstract

The reduction of riparian vegetation around aquatic environments causes several physicochemical alterations and favors the entry of pesticides via surface runoff. Such changes have negative effects on aquatic organisms. In this study, we evaluated histopathological alterations in gills of Astyanax bifasciatus to test the hypothesis that more severe histopathological alterations occur in gills of fish from streams with higher agricultural impact from the surrounding area. The specimens were collected by electrofishing in seven streams of the lower Iguaçu basin between August 2015 and February 2016. The gills were processed according to routine histological methods and examined by light microscopy. The histopathological alterations, mainly stage II (lamellar aneurysm and total fusion of lamellae), were observed in fish collected in streams with higher agricultural activity. In these streams, the histopathological index indicated slight to moderate organ lesions. In contrast, in streams with more vegetation cover, fish collected presented stage I histopathological alterations (lamellar edema and lamellar hyperplasia), and the HI indicated normal functioning of the gills. In addition, chloride and acid mucous cells were more abundant in the gills of fish collected in rural streams. Our findings demonstrate that more severe histopathological alterations were registered in fish collected from streams with intense agricultural activity in the surrounding area. Therefore, it highlights that vegetation cover around the streams is a positive force for the conservation and health of aquatic organisms.

Keywords

Characidae Environmental monitoring Biomarker Land uses 

Notes

Acknowledgments

We thank the support of the Western Paraná State University and all our colleagues of Laboratório de Ictiologia, Ecologia e Biomonitoramento (LIEB) for the help in fieldwork and in the laboratory.

Funding information

This research was supported by grants from the CAPES.

References

  1. Alazemi, B. M., Lewis, J. W., & Andrews, E. B. (1996). Gill damage in the freshwater fish Gnathonemus petersii (family: Mormyridae) exposed to selected pollutants: An ultrastructural study. Environmental Technology, 17(1), 225–238.CrossRefGoogle Scholar
  2. Al-Ghanbousi, R., Ba-Omar, T., Victor, R. (2012). Effect of deltamethrin on the gills of Aphanius díspar: A microscopic study. Tissue and Cell.v, 44, 7-14.CrossRefGoogle Scholar
  3. Baumgartner, G., Pavanelli, C. S., Baumgartner, D., Bifi, A. G., Debona, T., & Frana, V. A. (2012). Peixes do baixo rio Iguaçu. EDUEM, Maringá.  https://doi.org/10.7476/9788576285861.
  4. Bentivegna, C. S., Cooper, K. R., Olson, G., Pena, E. A., Millemann, D. R., & Portier, R. J. (2015). Chemical and histological comparisons between Brevoortia sp. (menhaden) collected in fall 2010 from Barataria Bay, LA and Delaware Bay, NJ following the deepwater horizon (DWH) oil spill. Marine Environmental Research, 112, 21–34.CrossRefGoogle Scholar
  5. Bortolozo, F. R., Favaretto, N., Dieckow, J., Moraes, A., Vezzani, F. M., & Silva, E. D. B. (2015). Water, sediment and nutrient retention in native vegetative filter strips of southern Brazil. Internation Journal of Plant Nutrition Soil Science, 4(5), 426–436.CrossRefGoogle Scholar
  6. Bueno-Krawczyk, A. C. D., Guiloski, I. C., Piancini, L. D. S., et al. (2015). Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere, 135, 247–264.CrossRefGoogle Scholar
  7. Casatti, L., Langeani, F., & Castro, R. M. C. (2001). Peixes de riacho do Parque Estadual Morro do Diabo, Bacia do Alto Rio Paraná, SP. Biota Neotropica, 1(1), 1–15.CrossRefGoogle Scholar
  8. Casatti, L. (2010). Alterações no Código Florestal Brasileiro: impactos potenciais sobre a ictiofauna. Biota Neotrop, 10(4), 31–34.  https://doi.org/10.1590/S1676-06032010000400002.CrossRefGoogle Scholar
  9. Cerqueira, C. C. C., & Fernandes, M. N. (2002). Gill tissue recovery after copper exposure and blood parameter responses in the tropical fish Prochilodus scrofa. Ecotoxicology and Environmental Safety, 52, 83–91.CrossRefGoogle Scholar
  10. Chiang, G., Munkittrick, K. R., Urrutia, R., Concha, C., Rivas, M., Diaz-Jaramillo, M., & Barra, R. (2012). Liver ethoxyresorufin-O-deethylase and brain acetylcholinesterase in two freshwater fish species of South America; the effects of seasonal variability on study design for biomonitoring. Ecotoxicology and Environmental Safety, 86, 147–155.CrossRefGoogle Scholar
  11. Colvin, S. A., Sullivan, S. M. P., Shirey, P. D., Colvin, R. W., Winemiller, K. O., Hughes, R. M., et al. (2019). Headwater streams and wetlands are critical for sustaining fish, fisheries, and ecosystem services. Fisheries, 44(2), 73–91.CrossRefGoogle Scholar
  12. CONAMA. (2005). Classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes. Publicação DOU n° 053, de 18/03/2005, p. 58–63. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459 . Accessed 27 november 2019Google Scholar
  13. Dang, M., Nørregaard, R., Bach, L., Sonne, C., Søndergaard, J., Gustavson, K., Aastrup, P., & Nowak, B. (2017). Metal residues, histopathology and presence of parasites in the liver and gills of fourhorn sculpin (Myoxocephalus quadricornis) and shorthorn sculpin (Myoxocephalus scorpius) near a former lead-zinc mine in East Greenland. Environmental Research, 153, 171–180.CrossRefGoogle Scholar
  14. Dane, H., & Sisman, T. (2015). Histopathological changes in gill and liver of Capoeta capoeta living in the Karasu River, Erzurum. Environmental Toxicology, 30(8), 904–917.  https://doi.org/10.1002/tox.21965.CrossRefGoogle Scholar
  15. David, J. A. O., & Fontanetti, C. S. (2009). The role of mucus in Mytella falcata (Orbigny, 1842) gills from polluted environments. Water, Air, and Soil Pollution, 203, 261–266.CrossRefGoogle Scholar
  16. Delariva, R. L., Hahn, N. S., & Kashiwaqui, E. A. (2013). Diet and trophic structure of the fish fauna in a subtropical ecosystem: Impoundment effects. Neotrop Ichthyol, 11(4), 891–904.  https://doi.org/10.1590/S1679-62252013000400017.CrossRefGoogle Scholar
  17. Delariva, R. L., Neves, M. P., Larentis, C., Kliemann, B. C. K., Baldasso, M. C., & Wolff, L. L. (2018). Fish fauna in forested and rural streams from an ecoregion of high endemism, lower Iguaçu River basin, Brazil. Biota Neotropica, 18(3).Google Scholar
  18. El-Amrani, S., et al. (2012). Bioconcentration of pesticides in zebrafish eleuthero embryos (Danio rerio). Science of the Total Environment, 425, 184–190.CrossRefGoogle Scholar
  19. Freire, C. A., Souza-Bastos, L. R., Chiesse, J., Tincani, F. H., Piancini, L. D. S., Randi, M. A. F., Prodocimo, V., Cestari, M. M., Silva-de-Assis, H. C. S., Abilhoa, V., Vitule, J. R. S., Bastos, L. P., & de Oliveira-Ribeiro, C. A. (2015). A multibiomarker evaluation of urban, industrial and agricultural exposure of small characins in a large freshwater basin in southern Brazil. Environmental Science and Pollution Research International, 22(17), 13263–13277.CrossRefGoogle Scholar
  20. Freitas, J. S., Teresa, F. B., & Almeida, E. A. (2017). Influence of temperature on the antioxidant responses and lipid peroxidation or two species of tadpoles (Rhinella schneideri and Physalaemus nattereri) exposed to the herbicide sulfentrazone (Boral 500SC®). Comparative biochemistry and Physiology Part C, 197(1), 32–44.Google Scholar
  21. Ghisi, N. C., Oliveira, E. C., Mota, T. E. M., Vanzetto, G. V., Roque, A. A., Godinho, J. P., & Bettim, F. L. (2016). Integrated biomarker response in catfish Hypostomus ancistroides by multivariate analysis in the Pirapó River, southern Brazil. Chemosphere, 161, 69–79.  https://doi.org/10.1016/j.chemosphere.2016.06.113.CrossRefGoogle Scholar
  22. Gonçalves, J. F. J., Martins, R. T., Ottoni, B. M. P., & Couceiro, S. R. M. (2014). Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In N. Hamada, J. L. Nessimian, & R. B. Querino (Eds.), Insetos aquáticosna Amazônia Brasileira: Taxonomia, biologia e ecologia (p. 724). Manaus: INPA.Google Scholar
  23. IBGE. (2015). Indicadores de desenvolvimento sustentável: Brasil: 2015/IBGE, Coordenação de Recursos Naturais e Estudos Ambientais e Coordenação de Geografia. Rio de Janeiro: IBGE.Google Scholar
  24. Jaramillo-Villa, U., & Caramaschi, É. P. (2008). Índices de integridade biótica usando peixes de água doce: uso nas regiões tropical e subtropical. Oecologia Brasiliensis, 12(3), 442–462.Google Scholar
  25. Lowe-McConnell, R. H. (1999). Estudos ecológicos de comunidades de peixes tropicais (534 p). São Paulo: EDUSP.Google Scholar
  26. Mallat, J. (1985). Fish gill structural changes induced by toxicants and other irritants: A statistical review. Canadian Journal of Fisheries and Aquatic Sciences, 42, 630.CrossRefGoogle Scholar
  27. Middlebrooks, E. J., Gaspar, M. J., Gaspar, R. D., Reynolds, J. H., Porcella, D. B. (1973). Effects of temperature on the toxicity to the aquatic biota of waste discharges—a compilation of the literature. Reports.Google Scholar
  28. Molina, M. C., Roa-Fuentes, C. A., Zeni, J. O., & Casatti, L. (2017). The effects of land use at different spatial scales on instream features in agricultural streams. Limnologica, 65, 14–21.CrossRefGoogle Scholar
  29. Neves, M. P., Amorim, J. P. A., & Delariva, R. L. (2018). Influence of land use on the health of a detritivorous fish (Ancistrus mullerae) endemic to the Iguassu ecoregion: Relationship between agricultural land use and severe histopathological alterations. Environmental Science and Pollution Research, 25, 11670–11682.  https://doi.org/10.1007/s11356-018-1283-0.CrossRefGoogle Scholar
  30. Nimet, J., Guimarães, A. T. B., & Delariva, R. L. (2017). Use of muscular cholinesterase of Astyanax bifasciatus (Teleostei, Characidae) as a biomarker in biomonitoring of rural streams. Bulletin of Environmental Contamination and Toxicology, 99(2), 232–238.CrossRefGoogle Scholar
  31. Nimet, J., Amorim, J. P. A., & Delariva, R. L. (2018). Histopathological alterations in Astyanax bifasciatus (Teleostei: Characidae) correlated with land uses of surroundings of streams. Neotropical Ichthyology, 16(1), e170129.  https://doi.org/10.1590/1982-0224-20170129.CrossRefGoogle Scholar
  32. Nogueira, C., Buckup, P. A., Menezes, N. A., Oyakawa, O. T., Ksecker, T. P., Neto, M. B. R., & Silva, J. M. C. (2010). Restricted-range fishes and the conservation of Brazilian freshwaters. PLoS One, 5(6), e11390.CrossRefGoogle Scholar
  33. Paulino, M. G., Benze, T. P., Sadauskas-Henrique, H., Sakuragui, M. M., Fernandes, J. B., & Fernandes, M. N. (2014). The impact of organochlorines and metals on wild fish living in a tropical hydroelectric reservoir: Bioaccumulation and histopathological biomarkers. Science of the Total Environment, 497, 293–306.CrossRefGoogle Scholar
  34. Poleksic, V., & Mitrovic-Tutundzic, V. (1994). Fish gills as a monitor of sublethal and chronic effects of pollution. In R. Müller & R. Lloyd (Eds.), Sublethal and chronic effects of pollutants on freshwater fish (pp. 339–352). Oxford: Fishing News Books.Google Scholar
  35. Rajkumar, K. S., Kanipandian, N., & Thirumurugan, R. (2016). Toxicity assessment on haemotology, biochemical and histopathological alterations of silver nanoparticles-exposed freshwater fish Labeo rohita. Applied Nanoscience, 6, 19–29.CrossRefGoogle Scholar
  36. Richmonds, C., & Dutta, H. M. (1989). Histopathological changes induced by malathion in the gills of bluegill Lepomis macrochirus. Bulletin of Environmental Contamination and Toxicology, 43, 123–130.CrossRefGoogle Scholar
  37. Rudnicki, C. A. M., et al. (2009). Gills of juvenile fish Piaractus mesopotamicus as histological biomarkers for experimental sub-lethal contamination with the organophosphorus Azodrin-400. Brazilian Archives of Biology and Technology, 52(6), 1431–1441.CrossRefGoogle Scholar
  38. Santana, M. S., Yamamoto, F. Y., Sandrini-Neto, L., Filipak Neto, F., Ortolani-Machado, C. F., Oliveira Ribeiro, C. A., & Prodocimo, M. M. (2018). Diffuse sources of contamination in freshwater fish: Detecting effects through active biomonitoring and multi-biomarker approaches. Ecotoxicology and Environmental Safety, 149, 173–181.CrossRefGoogle Scholar
  39. Shankar, K. M., Kiran, B. R., & Venkateshwarlu, M. (2013). A review on toxicity of pesticides in fish. International Journal of Open Scientific Research, 1(1), 15–36.Google Scholar
  40. Silva, M. R., Campos, A. C. E., & Bohm, F. Z. (2013). Agrotóxicos e seus impactos sobre ecossistemas aquáticos continentais. SaBios Revista de Saúde e Biol, 8, 46–58.Google Scholar
  41. Subburaj, A., Jawahar, P., Jayakumar, N., Srinivasan, A., & Ahilan, B. (2018). Acute toxicity bioassay of Malathion (EC 50%) on the fish, Oreochromis mossambicus (tilapia) and associated histological alterations in gills. Journal of Entomology and Zoology Studies, 6(1), 103–107.Google Scholar
  42. Takashima, F., & Hibiya, T., (1995). An Atlas of Fish Histology: Normal and Pathological Features. Fischer Verlag, Tokyo: Kodanska /Stuttgart, 195, 2nd ed.Google Scholar
  43. Uner, N., Oruc, E. O., Sevgiler, Y., Sahin, N. D., & Usta, D. (2006). Effects of Diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus. Environmental Toxicology and Pharmacology, 21, 241–254.CrossRefGoogle Scholar
  44. Wootton, R. J. (1990). Ecology of Teleost Fishes. Fish and Fisheries Series 1. Chapman & Hall, London, 404.Google Scholar
  45. Yamamoto, F. Y., Pereira, M. V. M., Lottermann, E., Santos, G. S., Stremel, T. R. O., Doria, H. B., & Neto, F. F. (2016). Bioavailability of pollutants sets risk of exposure to biota and human population in reservoirs from Iguaçu River (southern Brazil). Environmental Science and Pollution Research, 23(18), 18111–18128.CrossRefGoogle Scholar
  46. Yamamoto, F. Y., Garcia, J. R. E., Kupsco, A., & Oliveira Ribeiro, C. A. (2017). Vitellogenin levels and others biomarkers show evidences of endocrine disruption in fish species from Iguaçu River—southern Brazil. Chemosphere, 186, 88–99.  https://doi.org/10.1016/j.chemosphere.2017.07.111.CrossRefGoogle Scholar
  47. Yancheva, V., Velcheva, I., Stoyanova, S., & Georgieva, E. (2016). Histological biomarkers in fish as a tool in ecological risk assessment and monitoring programs: A review. Applied Ecology and Environmental Research, 14, 47–75.CrossRefGoogle Scholar
  48. Zeni, J. O., Pérez-Mayorga, M. A., Roa-Fuentes, C. A., Brejão, G. L., & Casatti, L. (2018). How deforestation drives stream habitat changes and the functional structure of fish assemblages in different tropical regions. Aquatic Conservation: Marine and Freshwater Ecosystems, 29(8), 1238–1252.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade Estadual de Maringá, Centro de Ciências BiológicasPrograma de Pós-Graduação em Biologia ComparadaMaringáBrazil
  2. 2.Departamento de Zoologia, Pós-graduação em Biologia AnimalUniversidade Federal do Rio Grande do Sul, Instituto de BiociênciasPorto AlegreBrazil
  3. 3.Universidade Federal de São CarlosPós-graduação em Ecologia e Recursos Naturais. Rodovia Washington Luiz km 235São CarlosBrazil
  4. 4.Centro de Ciências Biológicas e Saúde, Laboratório de Biologia Tecidual e ReproduçãoUniversidade Estadual do Oeste do Paraná. Rua Universitária 2069CascavelBrazil
  5. 5.Universidade Estadual do Oeste do Paraná, Centro de Ciências Biológicas e da Saúde. Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais. Rua Universitária 2069CascavelBrazil

Personalised recommendations