Advertisement

Evaluating different spatial interpolation methods and modeling techniques for estimating spatial forest site index in pure beech forests: a case study from Turkey

  • Alkan Günlü
  • Sinan BulutEmail author
  • Sedat Keleş
  • İlker Ercanlı
Article
  • 92 Downloads

Abstract

Spatial interpolation methods are widely used to estimate some ecological and environmental parameters that are difficult to measure. One of these parameters is forest site index, which is a demonstration of forest productivity. The aim of this study was to estimate forest site index in a beech forest ecosystem in Turkey. In this context, soil characteristics, stand parameters, and topographic features were measured in 70 temporary sample plots of beech forest stands. Forest site index of beech forest stands was predicted using different modeling techniques such as multiple regression analysis (MLR), multilayer perceptron (MLP), radial basis function (RBF), multiple regression kriging (MLRK), multilayer perceptron kriging (MLPK), and radial basis function kriging (RBFK). The results showed that the RBFK (R2 = 0.98) and MLRK (R2 = 0.96) outperformed the others to predict forest site index in the study area. The greatest improvement occurred when krigged residual used with MLR, which increase from 0.23 to 0.96. Thus, MLRK method significantly improved the prediction accuracy for site index. The models combined with krigged residuals were more successful than those used without krigged residuals. The results of this study suggest that the combined methods may help obtaining improved site index maps for forest management.

Keywords

Forest site index Spatial distribution Artificial neural networks Combined methods 

Notes

Funding information

This study was supported by the BAP unit of Karadeniz Technical University, Project No: 2005.113.001.3.

References

  1. Aertsen, W., Kint, V., Van Orshoven, J., Özkan, K., & Muys, B. (2010). Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling, 221, 1119–1130.Google Scholar
  2. Aertsen, W., Kint, V., Van Orshoven, J., & Muys, B. (2011). Evaluation of modelling techniques for forest site productivity prediction in contrasting ecoregions using stochastic multicriteria acceptability analysis (SMAA). Environmental Modelling & Software, 26, 929–937.Google Scholar
  3. Aertsen, W., Kint, V., Von Wilpert, K., Zirlewagen, D., Muys, B., & Van Orshoven, J. (2012). Comparison of location-based, attribute-based and hybrid regionalization techniques for mapping forest site productivity. Forestry: An International Journal of Forest Research, 85, 539–550.Google Scholar
  4. Altun, L., Başkent, E. Z., Günlü, A., & Kadıoğulları, A. İ. (2008). Classification and mapping forest sites using geographic information system (GIS): A case study in Artvin Province. Environment Monitoring and Assessment, 137, 149–161.Google Scholar
  5. Arp, P. A. (1999). Soils for plant growth field and laboratory manuals Faculty of Forestry and Environmental Management University of New Brunswick Canada.Google Scholar
  6. Barni, P. E., Manzi, A. O., Condé, T. M., Barbosa, R. I., & Fearnside, P. M. (2016). Spatial distribution of forest biomass in Brazil’s state of Roraima, northern Amazonia. Forest Ecology and Management, 377, 170–181.Google Scholar
  7. Bergier, I., Assine, M. L., McGlue, M. M., Alho, C. J., Silva, A., Guerreiro, R. L., & Carvalho, J. C. (2018). Amazon rainforest modulation of water security in the Pantanal wetland. Science of the Total Environment, 619, 1116–1125.Google Scholar
  8. Bohling, G. (2005). Introduction to geostatistics and variogram analysis. Kansas Geological Survey, 1–20.Google Scholar
  9. Bostan, P. (2017). Basic kriging methods in geostatistics. Yuzuncu Yil University Journal of Agricultural Sciences, 27, 10–20.Google Scholar
  10. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Turco, R. F., & Konopka, A. E. (1994). Field scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.Google Scholar
  11. Carmean, W. H. (1975). Forest site quality evaluation in the United States. In Advances in Agronomy, 27, 209–269.Google Scholar
  12. Carus, S. (1998). Aynı yasli doğu kayini (Fagus orientalis Lipsky) ormanlarında artim ve büyüme. PhD Graduate School of Natural and Applied Sciences İstanbul University Turkey.Google Scholar
  13. Cellura, M., Cirrincione, G., Marvuglia, A., & Miraoui, A. (2008). Wind speed spatial estimation for energy planning in Sicily: A neural kriging application. Renewable Energy, 33, 1251–1266.Google Scholar
  14. Dai, F., Zhou, Q., Lv, Z., Wang, X., & Liu, G. (2014). Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan plateau. Ecological Indicators, 45, 184–194.Google Scholar
  15. Demyanov, V., Kanevski, M., Chernov, S., Savelieva, E., & Timonin, V. (1998). Neural network residual kriging application for climatic data. Journal of Geographic Information and Decision Analysis, 2, 215–232.Google Scholar
  16. Demyanov, V., Soltani, S., Kanevski, M., Canu, S., Maignan, M., Savelieva, E., Timonin, V., & Pisarenko, V. (2001). Wavelet analysis residual kriging vs. neural network residual kriging. Stochastic Environmental Research and Risk Assessment, 15, 18–32.Google Scholar
  17. Diéguez-Aranda, U., Burkhart, H. E., & Amateis, R. L. (2006). Dynamic site model for loblolly pine (Pinus taeda L.) plantations in the United States. Forest Science, 52, 262–272.Google Scholar
  18. Emamgholizadeh, S., Shahsavani, S., & Eslami, M. A. (2017). Comparison of artificial neural networks, geographically weighted regression and cokriging methods for predicting the spatial distribution of soil macronutrients (N, P, and K). Chinese Geographical Science, 27, 747–759.Google Scholar
  19. Göl, C., Bulut, S., & Bolat, F. (2017). Comparison of different interpolation methods for spatial distribution of soil organic carbon and some soil properties in the Black Sea backward region of Turkey. Journal of African Earth Sciences, 134, 85–91.Google Scholar
  20. Gunlu, A. (2009) Forest site classification using direct, indirect and remote sensing methods, PhD Thesis, p.175, Karadeniz Technical University, Institute of Science.Google Scholar
  21. Günlü, A., Baskent, E. Z., Kadiogullari, A. I., & Ercanli, I. (2008). Classifying oriental beech (Fagus orientalis Lipsky.) forest sites using direct, indirect and remote sensing methods: A case study from Turkey. Sensors, 8, 2526–2540.Google Scholar
  22. Günlü, A., Başkent, E. Z., Kadıoğulları, A. İ., & Altun, L. (2009). Forest site classification using Landsat 7 ETM data: A case study of Maçka-Ormanüstü forest, Turkey. Environment Monitoring and Assessment, 151, 93–104.Google Scholar
  23. Hengl, T., Heuvelink, G. B., & Rossiter, D. G. (2007). About regression-kriging: From equations to case studies. Computers & Geosciences, 33, 1301–1315.Google Scholar
  24. Hock, B. K., Payn, T. W., & Shirley, J. W. (1993). Using a geographic information system and geostatistics to estimate site index of Pinus radiata for Kaingaroa Forest. New Zealand Journal of Forestry Science, 23, 264–277.Google Scholar
  25. Isaaks, E. H., & Srivastava, R. M. (2001). An introduction to applied geostatistics. 1989. Oxford University press New York USA Jones DR, a taxonomy of global optimization methods based on response surfaces. Journal of Global Optimization, 23, 345–383.Google Scholar
  26. Kimberley, M. O., Watt, M. S., & Harrison, D. (2017). Characterising prediction error as a function of scale in spatial surfaces of tree productivity. New Zealand Journal of Forestry Science, 47, 19.Google Scholar
  27. Kristensen, T., Ohlson, M., Bolstad, P., & Nagy, Z. (2015). Spatial variability of organic layer thickness and carbon stocks in mature boreal forest stands-implications and suggestions for sampling designs. Environmental Monitoring and Assessment, 187, 1–19.Google Scholar
  28. Li, J., Heap, A. (2008). A review of spatial interpolation methods for environmental scientists. Geoscience Australia Canberra, p 137.Google Scholar
  29. Li, J., Heap, A. D., Potter, A., & Daniell, J. J. (2011). Application of machine learning methods to spatial interpolation of environmental variables. Environmental Modelling & Software, 26, 1647–1659.Google Scholar
  30. Loghmari, I., Timoumi, Y., & Messadi, A. (2018). Performance comparison of two global solar radiation models for spatial interpolation purposes. Renewable and Sustainable Energy Reviews, 82, 837–844.Google Scholar
  31. Lumbres, R. I. C., Seo, Y. O., Son, Y. M., Doyog, N. D., & Lee, Y. J. (2018). Height-age model and site index curves for Acacia mangium and Eucalyptus pellita in Indonesia. Forest Science and Technology, 14, 91–96.Google Scholar
  32. Meng, Q., Liu, Z., & Borders, B. E. (2013). Assessment of regression kriging for spatial interpolation–comparisons of seven GIS interpolation methods. Cartography and Geographic Information Science, 40, 28–39.Google Scholar
  33. Mohamed, A., Reich, R. M., Khosla, R., Aguirre-Bravo, C., & Briseño, M. M. (2014). Influence of climatic conditions, topography and soil attributes on the spatial distribution of site productivity index of the species rich forests of Jalisco, Mexico. Journal of Forestry Research, 25, 87–95.Google Scholar
  34. Nothdurft, A., Wolf, T., Ringeler, A., Böhner, J., & Saborowski, J. (2012). Spatio-temporal prediction of site index based on forest inventories and climate change scenarios. Forest Ecology and Management, 279, 97–111.Google Scholar
  35. Palmer, D. J., Höck, B. K., Kimberley, M. O., Watt, M. S., Lowe, D. J., & Payn, T. W. (2009). Comparison of spatial prediction techniques for developing Pinus radiata productivity surfaces across New Zealand. Forest Ecology and Management, 258, 2046–2055.Google Scholar
  36. Palmer, J. G., Watt, M. S., Kimberley, M. O., Hock, B. K., Payn, T. W., & Lowe, D. J. (2010). Mapping and explaining the productivity of Pinus radiata in New Zealand. New Zealand Journal of Forestry, 55, 15–21.Google Scholar
  37. Palmer, D. J., Watt, M. S., Kimberle, Y. M. O., & Dungey, H. S. (2012). Predicting the spatial distribution of Sequoia sempervirens productivity in New Zealand. New Zealand Journal of Forestry Science, 42, 81–89.Google Scholar
  38. Parresol, B. R., Scott, D. A., Zarnoch, S. J., Edwards, L. A., & Blake, J. I. (2017). Modeling forest site productivity using mapped geospatial attributes within a South Carolina landscape, USA. Forest Ecology and Management, 406, 196–207.Google Scholar
  39. Raimundo, M. R., Scolforo, H. F., de Mello, J. M., Scolforo, J. R. S., McTague, J. P., & dos Reis, A. A. (2017). Geostatistics applied to growth estimates in continuous forest inventories. Forest Science, 63, 29–38.Google Scholar
  40. Scolforo, H. F., Scolforo, J. R. S., de Mello, J. M., de Mello, C. R., & Morais, V. A. (2016). Spatial interpolators for improving the mapping of carbon stock of the arboreal vegetation in Brazilian biomes of Atlantic forest and Savanna. Forest Ecology and Management, 376, 24–35.Google Scholar
  41. Scolforo, H. F., Scolforo, J. R. S., Stape, J. L., McTague, J. P., Burkhart, H., McCarter, J., de Castro Neto, F., Araújo Loos, R., & Sartorio, R. C. (2017). Incorporating rainfall data to better plan eucalyptus clones deployment in eastern Brazil. Forest Ecology and Management, 391, 145–153.Google Scholar
  42. Socha, J., Pierzchalski, M., Bałazy, R., & Ciesielski, M. (2017). Modelling top height growth and site index using repeated laser scanning data. Forest Ecology and Management, 406, 307–317.Google Scholar
  43. Statsoft, I. N. C. (2007). STATISTICA (data analysis software system). Version, 7, 1984–2004.Google Scholar
  44. Thistlethwaite, F. R., Ratcliffe, B., Klápště, J., Porth, I., Chen, C., Stoehr, M. U., & El-Kassaby, Y. A. (2017). Genomic prediction accuracies in space and time for height and wood density of Douglas-fir using exome capture as the genotyping platform. BMC Genomics, 18, 930.Google Scholar
  45. Vieira, G. C., de Mendonça, A. R., da Silva, G. F., Zanetti, S. S., da Silva, M. M., & dos Santos, A. R. (2018). Prognoses of diameter and height of trees of eucalyptus using artificial intelligence. Science of the Total Environment, 619, 1473–1481.Google Scholar
  46. Wang, Y., Raulier, F., & Ung, C. H. (2005). Evaluation of spatial predictions of site index obtained by parametric and nonparametric methods—A case study of lodgepole pine productivity. Forest Ecology and Management, 214, 201–211.Google Scholar
  47. Xia, Q., Xiu, J., Yang, Z., & Liu, C. (2017). An interpolation method of soil erosion based on flexible factor. In Chinese intelligent systems conference (pp. 109-119), Singapore: Springer.Google Scholar
  48. Zhang, Y. F., Wang, X. P., Hu, R., & Pan, Y. X. (2018). Meteorological influences on process-based spatial-temporal pattern of throughfall of a xerophytic shrub in arid lands of northern China. Science of the Total Environment, 619, 1003–1013.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of ForestryÇankırı Karatekin UniversityÇankırıTurkey

Personalised recommendations