Advertisement

Effects of urbanization on water quality in a watershed in northeastern Brazil

  • Thais Carvalho CerqueiraEmail author
  • Roberto Lemos Mendonça
  • Ronaldo Lima Gomes
  • Raildo Mota de Jesus
  • Daniela Mariano Lopes da Silva
Article
  • 94 Downloads

Abstract

Changes to land use generate imbalances in the natural dynamics of aquatic ecosystems. These changes can vary according to the specific characteristics of each environment and due to seasonal factors, reinforcing the importance of studies in this area in different regions of the globe. Thus, the aim of this study was to analyze the effects of land use change on the rivers and streams of the Cachoeira River Basin in the Northeast of Brazil. Samples were collected bi-monthly at 16 points along the basin over 1 year and analyzed for physical and chemical parameters (temperature, pH, conductivity, and percentage saturation of dissolved oxygen), inorganic nutrients (NO3, NO2, NH4+/NH3, PO43−, SiO4) and dissolved major ions (Ca2+, K+, Mg2+, Na+, HCO3). The highest concentrations of NO3, NO2, NH4+/NH3, and PO43− occurred at the points with the highest percentage of urban areas and population density. The major ions Ca2+, K+, Mg2+, Na+, and HCO3 were positively correlated with the percentage of pasture coverage; however, the high concentrations of these ions and the strong correlation between them revealed that other factors besides land use, such as soil cover, geological formation, and water deficit, may be jointly contributing to increases in their concentrations. Thus, the results show that urbanization represents the type of land use with the greatest negative effect on water quality since it alters the concentrations of inorganic nutrients dissolved in the Cachoeira River Basin.

Keywords

Landscape ecology Tropical basin Urbanization Water quality 

Notes

Acknowledgments

We would like to thank the support provided from the FAPESB for the doctorate scholarship. We are grateful to all field volunteers who participated in the field collection and all the people who directly or indirectly contributed to this work.

Funding information

This work received funding from the Universidade Estadual de Santa Cruz [Grant Number 0220.1100.1360].

References

  1. Adams, S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.Google Scholar
  2. Alberts, J. M., Beaulieu, J. J., & Buffam, I. (2017). Watershed land use and seasonal variation constrain the influence of riparian canopy cover on stream ecosystem metabolism. Ecosystems, 20, 553–567.Google Scholar
  3. Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematic, 35, 257–284.Google Scholar
  4. ANA (2013). Atlas Esgotos: Despoluição de Bacias Hidrográficas. Agência Nacional de Águas. http://www.snirh.gov.br/portal/snirh/snirh-1/atlas-esgotos. Accessed 02 Dec 2019.
  5. Andrade, T. M. B., Camargo, P. B., Silva, D. M. L., Piccolo, M. C., Vieira, S. A., Alves, L. F., Joly, C. A., & Martinelli, L. A. (2011). Dynamics of dissolved forms of carbon and inorganic nitrogen in small watersheds of the coastal Atlantic forest in Southeast Brazil. Water, Air, and Soil Pollution, 214, 393–408.Google Scholar
  6. BAHIA. (2001). Programa de Recuperação das Bacias dos Rios Cachoeira e Almada - Diagnóstico Regional. Núcleo de Bacias Hidrográficas da UESC, Superintendência de Recursos Hídricos do Estado da Bahia. Google Scholar
  7. Ballester, M. V. R., Victoria, D. C., Kruschea, A. V., Coburnb, R., Victoria, R. L., Richeyb, J. R., Logsdonb, M. G., Mayorgab, E., & Matricardic, E. (2003). A remote sensing/GIS-based physical template to understand the biogeochemistry of the Ji-Paraná river basin (Western Amazônia). Remote Sensing of Environment, 87, 429–445.Google Scholar
  8. Barrenha, P. I. I., Tanaka, M. O., Hanai, F. Y., Pantano, G., Moraes, G. H., Xavier, C., Awan, A. T., Grosseli, G. M., Fadini, P. S., & Mozeto, A. A. (2018). Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river. Environmental Monitoring and Assessment, 190, 43–55.Google Scholar
  9. Biggs, T. W., Dunne, T., & Martinelli, L. A. (2004). Natural controls and human impacts on stream nutrient concentrations in a deforested region of the Brazilian Amazon basin. Biogeochemistry, 68, 227–257.Google Scholar
  10. Bossa, A. Y., Diekkrüger, B., & Agbossou, E. K. (2014). Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water, 6, 3152–3181.Google Scholar
  11. Bustamante, M. M. C., Martinelli, L. A., Pérez, T., Rasse, R., Ometto, J. P. H. B., Pacheco, F. S., Lins, S. R. M., & Marquina, S. (2015). Nitrogen management challenges in major watersheds of South America. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/10/6/065007.Google Scholar
  12. Butcher, J. B. (1995). Dissolved-oxygen analysis with temperature dependence. Journal of Environmental Engineering, 121, 756–759.Google Scholar
  13. Cabrini, R., Canobbio, S., Sartori, L., Fornaroli, R., & Mezzanotte, V. (2013). Leaf packs in impaired streams: the influence of leaf type and environmental gradients on breakdown rate and invertebrate assemblage composition. Water Air and Soil Pollution, 224, 1–13.  https://doi.org/10.1007/s11270-013-1697-8.CrossRefGoogle Scholar
  14. Capps, K. A., Bentsen, C. N., & Ramírez, A. (2016). Poverty urbanization and environmental degradation: urban streams in the developing world. Freshwater Science, 35, 429–435.Google Scholar
  15. Carmouze JP (1994) O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas. Editora Edgar Blücher. São Paulo ed. Edgar Blücher.CEPLAC (1976) Comissão Execultiva do Plano da Lavoura cacaueira. Recursos Hídricos. 1976. Rio de Janeiro: IICA/CEPLAC.Google Scholar
  16. CEPLAC. Cpmissão Executiva do Plano da Lavoura Cacaueira. (1976). Recursos Hidricos. Rio de Janeiro:IICA/CPLAC. 280p.Google Scholar
  17. CEPTEC/INPE (2015) Centro de Previsão de Tempo e Estudos Climáticos/Instituto Nacional de Pesquisas Espaciais. Proclima – Programa de Monitoramento Climático em Tempo Real da região nordeste. http://proclima.cptec.inpe.br/ Accessed 02 Mar 2015.
  18. Cetra, M., Sarmento-Soares, L. M., & Martins-Pinheiro, R. F. (2010). Peixes de riachos e novas Unidades de Conservação no sul da Bahia. Pan-American Journal of Aquatic Sciences, 5, 11–21.Google Scholar
  19. Chaussê, T. C. C., Brandão, C. S., Silva, L. P., & Silva, D. M. L. (2016). Evaluation of nutrients and major ions in streams - implications of different timescale procedures. Environmental Monitoring and Assessment, 188, 1–16.  https://doi.org/10.1007/s10661-015-5034-0.CrossRefGoogle Scholar
  20. Correa-Gonzalez, J. C., Chavvez-Parga, M. C., Cortés, J. Á., & Pérez-Munguia, R. M. (2013). Photosynthesis, respiration and reaeration in a stream with complex dissolved oxygen pattern and temperature dependence. Ecological Modelling, 10, 220–227.Google Scholar
  21. Dodds, W. K., & Smith, V. H. (2016). Nitrogen phosphorus and eutrophication in streams. Inland Waters, 6, 155–164.Google Scholar
  22. EMBRAPA (2002) Solos da região Sudeste da Bahia: atualização da legenda de acordo com o sistema brasileiro de classificação de solos. Ilhéus: CEPLAC; Rio de Janeiro: Embrapa Solos. http://www.ceplac.gov.br/radar/Solos_Sudeste_Bahia.pdf. Accessed 16 Mar 2016.
  23. EMBRAPA (2006) Centro Nacional de Pesquisa de Solos (Rio de Janeiro). Sistema brasileiro de classificação de solos. 2. ed. – Rio de Janeiro : EMBRAPA-SPI 2006.Google Scholar
  24. Ficklin, D. L., Stewart, I. T., & Maurer, E. P. (2013). Effects of climate change on stream temperature, dissolved oxygen and sediment concentration in the Sierra Nevada in California. Water Resource Research, 49, 2765–2782.Google Scholar
  25. Figueirêdo, A. F. R., & Calasans, N. A. (2008). Risco de salinização dos solos da Bacia Hidrográfica do Rio Colônia - sudeste da Bahia/Brasil. Engevista, 10, 15–26.Google Scholar
  26. Filho WP, Morais EML (2001) Relationships between land use and macrophyte infestation in the Tucurui reservoir - Para – Brazil. International Geosciences and Remote Sensing Symposium - IGARSS'01 Sydney - Australia. Anais. IEEE 2001 International Geoscience and Remote Sensing Symposium.  https://doi.org/10.1109/IGARSS.2001.978248.
  27. Folke, C., Jansson, A., Larsson, J., & Costanza, R. (1997). Ecosystem appropriation by cities. Ambio, 26, 168–172.Google Scholar
  28. Germer, S., Neill, C., Vetter, T., Chaves, J., Krusche, A. V., & Elsenbeer, H. (2009). Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of Hydrology, 364, 349–363.Google Scholar
  29. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. American Association for the Advancement of Science, 170, 1088–1090.Google Scholar
  30. Gonçalves MGM (2016) Gênese de solos com horizonte Bt no domínio gnáissico da depressão semiárida do Vale do Jequitinhonha MG. Dissertation Universidade Federal de Viçosa. http://www.locus.ufv.br/bitstream/handle/123456789/10374/texto%20completo.pdf?sequence=5. Accessed 5 June 2017.
  31. Grasshoff, K., Erhardt, M., & Kremling, K. (1983). Methods of seawater analysis. Verlag Chemie: Weinheim.Google Scholar
  32. Gücker, B., Silva, R. C. S., Graeber, D., Monteiro, J. A. F., Brookshire, E. N. J., Chaves, R. C., & Boëchat, I. G. (2016). Dissolved nutrient exports from natural and human-impacted Neotropical catchments. Global Ecology and Biogeography, 25, 378–390.Google Scholar
  33. Halstead, J. A., Kliman, S., Berheide, C. W., Chaucer, A., & Cock-Esteb, A. (2014). Urban stream syndrome in a small lightly developed watershed: a statistical analysis of water chemistry parameters land use patterns and natural sources. Environmental Monitoring and Assessment, 186, 3391–3414.Google Scholar
  34. Harvey R, Lye L, Khan A, Paterson R (2011). The influence of air temperature on water temperature and the concentration of dissolved oxygen in Newfoundland rivers. Canadian Water Resource Journal 36.Google Scholar
  35. Huang, J., Li, Q., Pontius, R. G., Klemas, V., & Hong, H. (2013). Detecting the dynamic linkage between landscape characteristics and water quality in a subtropical coastal watershed southeast China. Environmental Management, 51, 32–44.Google Scholar
  36. IBGE (1999) Instituto Brasileiro De Geografia e Estatística: Projeto RADAM BRASIL. Folha SD24 Salvador – Potencial dos recursos Hídricos. Rio de Janeiro: IBGE.Google Scholar
  37. IBGE (2010) Instituto Brasileiro De Geografia e Estatística: Censo Demográfico Características da população e dos domicílios: resultados do universo. Rio de Janeiro: IBGE 2011. Disponível em: http://www.ibge.gov.br/home/estatistica/populacao/condicaodevida/indicadoresminimos/tabela1.shtm.
  38. ITB (2015) Instituto Trata Brasil: Ranking do Saneamento - 2015. Brasília. http://www.tratabrasil.org.br/ranking-do-saneamento-2015 Accessed 10 Sept 2015.
  39. Jeffrey, S. W., & Humphrey, G. F. (1975). New spectrophotometric equations for determining chlorophylls a, b, c and c2 in higher plants algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167, 191–194.Google Scholar
  40. Klumpp, A., Bauer, K., Franz-Gerstein, C., & Menezes, M. (2002). Variation of nutrient and metal concentrations in aquatic macrophytes along the Rio Cachoeira in Bahia (Brazil). Environment International, 28, 165–171.Google Scholar
  41. King, K.W., William, M.R., Johnson, L.T., Smith, D.R., Gregory, A.LaB., Fausey, N.R. (2017). Phosphorus Availability in Western Lake Erie Basin Drainage Waters: Legacy Evidence across Spatial Scales. Journal of Environmental Quality, 46, 466–469.Google Scholar
  42. Lauerwald, R., Laruelle, G. G., Hartmann, J., Ciais, P., & Regnier, P. A. G. (2015). Spatial patterns in CO2 evasion from the global river network. Global Biogeochemical Cycles, 29, 534–554.Google Scholar
  43. Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC- 105. Oak Ridge Tennessee: Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory U.S. Department of Energy .Google Scholar
  44. Lucio MZTPQL, Santos SS, Silva DML (2012) Hydrochemistry of Cachoeira River (Bahia State Brazil). Acta Limnologica Brasiliensia,  https://doi.org/10.1590/S2179-975X2012005000037.Google Scholar
  45. Marchetti, M. P., Light, T., Moyle, P. B., & Viers, J. H. (2004). Fish invasions in California watersheds: testing hypotheses using landscape patterns. Ecological Applications, 14, 1507–1525.Google Scholar
  46. Martinelli LA, Krusche AV, Vicgoria R L, Camargo PB, Bernardes M, Ferraz ES, Moraes JM, Ballester MV (1999) Effects of sewage on the chemical composition of Piracicaba river Brazil. Water Air & Soil Pollution,  https://doi.org/10.1023/A:1005052213652 Google Scholar
  47. Martins AAM, Santos RA (Orgs.) (1993) Folha Ibicaraí: SD.24-Y-B-V: Estado da Bahia. Brasília: CPRM 1993. Programa Levantamentos Geológicos Básicos do Brasil - PLGB. Brasília MME/SMM/CPRM. http://rigeo.cprm.gov.br/xmlui/handle/doc/ 8644?show=full. Acessed 23 June 2017.
  48. Mazzetto, A. M., Feigl, B. J., Cerri, C. E. P., & Cerri, C. C. (2016). Comparing how land use change impacts soil microbial catabolic respiration in Southwestern Amazon. Brazilian Journal of Microbiology.  https://doi.org/10.1016/j.bjm.2015.11.025.Google Scholar
  49. McDowell, W. H., Potter, J. D., & Ramirez, A. (2019). Nutrient export and elemental stoichiometry in an urban tropical river. Ecological Applications, 29, 1–13.Google Scholar
  50. Meglioli, P. A., Aranibar, J. N., Villagra, P. E., & Riveros, C. V. (2017). Spatial patterns of soil resources under different land use in Prosopis woodlands of the Monte desert. Catena, 149, 86–97.Google Scholar
  51. Melo CR, Melo SC, Silva JFR, Guedes PA, Luna DS (2014) Análise quali-quantitativa da Bacia do Rio Cachoeira (BA). XII Simpósio de Recursos Hídricos do Nordeste. http://www.abrh.org.br/xiisrhn/anais/papers/PAP018343.pdf. Acessed 15 Nov 2015.
  52. Menezes, R. C. L., Conceição, H., Rosa, M. L. S., Galarza, M. A., Rios, D. C., & Macambira, M. J. B. (2012). O stock nefelina-sienítico rio Pardo província alcalina do sul do estado da Bahia. Geonomos, 20, 14–22.Google Scholar
  53. Meyer, J. L., Paul, M. J., & Taulbee, W. K. (2005). Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society, 24, 602–612.Google Scholar
  54. Millot, R., Gaillardet, J., Dupre, B., & Allegre, C. J. (2002). The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth and Planetary Science Letters, 196, 83–98.Google Scholar
  55. Nacif PGS (2000) Ambientes naturais da Bacia Hidrográfica do Rio Cachoeira com ênfase nos Domínios Pedológicos. Thesis Universidade Federal de Viçosa. http://www.locus.ufv.br/handle/123456789/10732. Acessed 01 Jan 2016.
  56. Nagy, R. C., Lockaby, B. G., Kalin, L., & Anderson, C. (2012). Effects of urbanization on stream hydrology and water quality: the Florida Gulf Coast. Hydrological Processes, 26, 2019–2030.Google Scholar
  57. Neill, C., Deegan, L. A., Thomas, S. M., & Cerri, C. C. (2001). Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecological Applications, 11, 1817–1828.Google Scholar
  58. O’Dricoll, C., O’Connor, M., Asam Zeyta, E., Brown, L. E., & Xiao, L. (2016). Forest clearfelling effects on dissolved oxygen and metabolism in petland stream. Journal of Environmental Management, 166, 250–259.Google Scholar
  59. Ometto, J. P. H. B., Martinelli, L. A., Ballester, M. V., Gessner, A., Krusche, A. V., Victoria, R. L. E., & William, S. M. (2000). Effects of land use on water chemistry and macroinvertebrates in two streams of the piracicaba river basin south-east Brazil. Freshwater Biology, 44, 327–337.Google Scholar
  60. Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. 2. ed. Oxford: New York: Pergamon Pres.Google Scholar
  61. Patel, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin Andhra Pradesh India. Environmental Earth Sciences.  https://doi.org/10.1007/s12665-015-5108-x.
  62. Paula, F. C. F., Silva, D. M. L., & Souza, C. M. (2012). Tipologias Hidroquímicas das Bacias Hidrográficas do Leste da Bahia. Revista Virtual de Química, 4, 365–373.Google Scholar
  63. Pereira, S. A., Trindade, C. R. T., Albertoni, E. F., & Palma-Silva, C. (2012). Aquatic macrophytes as indicators of water quality in subtropical shallow lakes, Southern Brazil. Acta Limnologica Brasiliensia, 24, 52–63.Google Scholar
  64. Pompêo, M. (2008). Monitoramento e manejo de macrófitas aquáticas. Oecologia Brasiliensis, 12, 406–424.Google Scholar
  65. Potter, J. D., McDowell, W. H., Helton, A. M., & Daley, M. L. (2014). Incorporating urban infrastructure into biogeochemical assessment of urban tropical stream in Puerto Rico. Biogeochemistry, 121, 272–286.Google Scholar
  66. Powers, S. M., Bruulsema, T. W., Burt, T. P., Chan, N. L., Elser, J. J., Haygarth, P. M., Howden, J. N. K., Jarvie, H. P., Lyu, Y., Peterson, H. M., Sharpley, A. N., Shen, J., Worrall, F., & Zhang, F. (2016). Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nature Geoscience, 9, 353–356.Google Scholar
  67. Prakash, K. L., Raghavendra, K., & Somashekar, R. K. (2009). Temporal-scale spectral variability analysis of water quality parameters to realize seasonal behaviour of a tropical river system-River Cauvery India. Journal of Environmental Biology, 30, 235–240.Google Scholar
  68. Rajwa-Kuligiewicz, A., Bialik, R. J., & Rowinki, P. M. (2015). Dossilved oxygen and water temperature dynamics in lowland rivers over various timescale. Journal of Hydrology Hydromechanics, 63, 353–363.Google Scholar
  69. Rosa, M. L. S., Conceição, H., Macambira, M. J. M., Marinho, M. M., & Marques, L. S. (2003). Idade (pb-pb) e aspectos petrográficos e litogeoquímicos do Complexo Alcalino Floresta Azul sul do Estado da Bahia. Revista Brasileira de Geociencias, 33, 13–20.Google Scholar
  70. Salomão, M. S. M. B., Cole, J., Clemente, C. A., Silva, D. M. L., Camargo, P. B., Victoria, R. L., & Martinelli, L. A. (2008). CO2 and O2 dynamics in human-impacted watersheds in the state of São Paulo, Brazil. Biogeochemistry, 88, 271–283.Google Scholar
  71. Santana, L. M., Moraes, M. E. B., Silva, D. M. L., & Ferragut, C. (2016). Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Brazilian Journal of Biology, 76, 600–610.Google Scholar
  72. SEI - Sítio da Superintendência de Estudos Econômicos e Sociais da Bahia-SEI (1999) Série Estudos e Pesquisas 45. Balanço hídrico do estado da Bahia. Salvador 1999. http://www.sei.ba.gov.br/index.php?option=com_content&view=article&id=76&Itemid=284. Accessed 28 Apr 2016.
  73. Seitzinger, S. P., Styles, R. V., Boyer, E. W., Alexander, R. B., Billen, G., Howarth, R. W., Mayer, B., & Breemen, N. (2002). Nitrogen retention in rivers: model development and application to watersheds in the northeastern U.S.A. Biogeochemistry.  https://doi.org/10.1023/A:1015745629794.Google Scholar
  74. Sferratore, A., Garnier, J., Billen, G., Conley, D. J., & Pinault, S. (2006). Diffuse and point sources of silica in the Seine River watershed. Environmental Science and Technology, 40, 6630–6635.Google Scholar
  75. Silva Junior, L. G. A., Gheyi, H. R., & Medeiros, J. F. (1999). Composição química de águas do cristalino do nordeste brasileiro. Revista Brasileira de Engenharia Agrícola e Ambiental, 3, 11–17.Google Scholar
  76. Silva, J. S. O., Bustamante, M. M. C., Markewitz, D., Krusche, A. V., & Ferreira, L. G. (2011a). Effects of land cover on chemical characteristics of streams in the Cerrado region of Brazil. Biogeochemistry, 105, 75–88.Google Scholar
  77. Silva, V. A., Moreau, M. S., Moreau, A. M. S. S., & Rego, N. A. C. (2011b). Uso da terra e perda de solo na Bacia Hidrográfica do Rio Colônia Bahia. Revista Brasileira Engenharia Agrícola Ambiental, 15, 310–315.Google Scholar
  78. Silva, D. M. L., Camargo, P. B., Mcdowell, W. H., Salomão, M. S. M. B., Vieira, I., & Martinelli, L. A. (2012). Influence of land use changes on water chemistry in streams in State of São Paulo southeast Brazil. Annals Brazilian Academy of Sciences, (Impress), 84, 919–930.Google Scholar
  79. Tran, C. P., Bode, R. W., Smith, A. J., & Klepper, G. S. (2010). Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators.  https://doi.org/10.1016/j.ecolind.2009.12.002.Google Scholar
  80. Trindade, M. E. J., Peressin, A., Cetra, M., & Jucá-Chagas, R. (2013). Variation in the diet of a small characin according to the riparian zone coverage in an Atlantic Forest stream northeastern Brazil. Acta Limnologica Brasiliensia, 25, 34–41.Google Scholar
  81. Tromboni, F., & Dodds, W. K. (2017). Relationships between land use and stream nutrient concentrations in a highly urbanized tropical region of Brazil: thresholds and riparian zones. Environmental Management, 60, 30–40.  https://doi.org/10.1007/s00267-017-0858-8.CrossRefGoogle Scholar
  82. UNFPA (2007) State of world population 2007: unleashing the potential of urban growth United Nations Population Fund. http://www.unfpaorg/swp/2007/presskit/pdf/sowp2007_engpdf
  83. Walsh, C. J., Roy, A. H., Feminella, J. W., Cottingham, P. D., Groffman, P. M., & Morgan, R. P. (2005). The urban stream syndrome: current knowledge and the search for a cure. Journal of the North American Benthological Society, 24, 706–723.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Ciências BiológicasUniversidade Estadual de Santa Cruz (UESC)IlhéusBrazil
  2. 2.Departamento de Ciências Agrárias e AmbientaisUniversidade Estadual de Santa Cruz (UESC)IlhéusBrazil
  3. 3.Departamento de Ciências Exatas e TecnológicasUniversidade Estadual de Santa Cruz (UESC)IlhéusBrazil

Personalised recommendations