The impact of the Gabčíkovo hydroelectric power barrier on the Danube floodplain environment—the results of long-term monitoring of land snail fauna

  • Tomáš ČejkaEmail author
  • Pavel Beracko
  • Igor Matečný


The Gabčíkovo Water Project, a major construction of damming and canalizing on the upper part of the middle Danube, significantly changed hydrological regime of the Danube inland delta, destroyed or affected most of the 230 km2 of wetlands and directly disrupted the original and unique ecosystem along a 37 km long river stretch. The aim of this study was to describe the effect of the Gabčíkovo Waterworks on the taxonomical and functional structure of the molluscan assemblages in the Danube riparian floodplain forests. The results demonstrate that the Gabčíkovo Waterworks had a direct and long-lasting effect on the direction of the succession of terrestrial molluscan assemblages, especially in the area of the by-pass section. The changes in the soil moisture caused by the waterworks’ operation led to significant changes in the species and functional composition of these assemblages. More specifically, however, the proportion of the generalists which prefer dry biotopes increased, while the number of moisture-demanding species decreased. Our results indicate that the current artificial flooding system cannot fully replace previous natural floods in the Danube inland delta, and it is also insufficient for restoration and preservation of the humidity conditions in the softwood floodplain forests which would be similar to the pre-operation period of the Gabčíkovo Waterworks.


Soil moisture Land snails Large rivers 



We would like to thank the professional English reviewer for correcting the English of this paper and the two reviewers for their valuable comments to the manuscript.

Funding information

This research was supported by the Slovak Grant Agency VEGA (project no. 1/0119/16, 2/0030/17 and 2/0079/18).


  1. Adis, J., & Junk, W. J. (2002). Terrestrial invertebrates inhabiting lowland river floodplains of Central Amazonia and Central Europe: a review. Freshwater Biology, 47, 711–731.Google Scholar
  2. Bunn, S. E., & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental Management, 30(4), 492–507.Google Scholar
  3. Cameron, R. A. D., & Pokryszko, B. M. (2005). Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. Journal of Conchology, 38, 529–547.Google Scholar
  4. Canty, A., & Ripley, B. (2016). Boot: Bootstrap R (S-plus) functions. R package version 1.3–18.Google Scholar
  5. Castella, E., Speight, M. C. D., Obrdlik, P., Schneider, E., & Lavery, T. (1994). A methodological approach to the use of terrestrial invertebrates for the assessment of wetlands. Wetlands Ecology & Management, 3, 17–36.Google Scholar
  6. Čejka, T. (2006). Use of terrestrial molluscs for bioindication of the impact of the Gabčíkovo hydraulic structures. In I. Mucha & M. J. Lisický (Eds.), Slovak-Hungarian environmental monitoring on the Danube (pp. 127–131). Bratislava: Ground Water Consulting Ltd..Google Scholar
  7. Čejka, T. (2019). Molluscs of the Slovak Republic: checklist Available online at (ver. 2019-05-15).
  8. Čejka, T., & Hamerlík, L. (2009). Land snails as indicators of soil humidity in Danubian woodland (SW Slovakia). Polish Journal of Ecology, 57(4), 741–747.Google Scholar
  9. Čejka, T., Horsák, M., & Némethová, D. (2008). The composition and richness of Danubian floodplain forest land snail faunas in relation to forest type and flood frequency. Journal of Molluscan Studies, 74, 37–45.Google Scholar
  10. Dray, S., & Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software, 22(4), 1–20.Google Scholar
  11. Frank, C. (1984). Aquatische und terrestrische Mollusken der niederösterreichischen Donau – Auengebiete und der angrenzenden Biotope. VI. Die Donau von Wien bis zur Staatsgrenze. Teil. 1. Zeitschrift fu¨r angewandte Zoologie, 3, 257–303.Google Scholar
  12. Gleich, J. G., & Gilbert, F. F. (1976). A survey of terrestrial gastropods from central Maine. Canadian Journal of Zoology, 54(5), 620–627.Google Scholar
  13. Hart, D. D., & Finelli, C. M. (1999). Physical-biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics, 30, 363–395.Google Scholar
  14. Henle, K., Dziock, F., Foeckler, F., Volker, K., Hüsing, V., Hettrich, A., Rink, M., Stab, S., & Scholz, M. (2006). Study design for assessing species environment relationships and developing indicator systems for ecological changes in floodplains – the approach of the RIVA project. International Review of Hydrobiology, 91(4), 292–313.Google Scholar
  15. Hettenbergerová, E., Horsák, M., Chandran, R., Hájek, M., Zelený, D., & Dvořáková, J. (2013). Patterns of land snail assemblages along a fine-scale moisture gradient. Malacologia, 56, 31–43.Google Scholar
  16. Hlavatý, Z., Banský, Ľ., Rodák, R., & Kučarová, K. (1999). Surface water, ground water and soil moisture regime. In I. Mucha (Ed.), Gabčíkovo part of the hydroelectric power project environmental impact review (pp. 119–142). Bratislava: Ground water consulting, Ltd..Google Scholar
  17. Holčík, J., Bastl, I., Ertl, M., & Vranovský, M. (1981). Hydrobiology and ichthyology of the Czechoslovak Danube in relation to predicted changes after the construction of the Gabčíkovo-Nagymaros River barrage system. Práce Laboratória Rybárstva a Hydrobiológie, 3, 19–158.Google Scholar
  18. Horáčková, J., Horsák, M., & Juřičková, L. (2014). Land snail diversity and composition in relation to ecological variations in Central European floodplain forests and history. Community Ecology, 15(1), 44–53.Google Scholar
  19. Horsák, M. (2000). The molluscs of the Oderský floodplain forest proposed national nature reserve in the Poodří protected landscape area (Czech Republic). Časopis Slezského Muzea Opava, 49, 183–187.Google Scholar
  20. Ilg, C., Foeckler, F., Deichner, O., & Henle, K. (2009). Extreme flood events favour floodplain mollusc diversity. Hydrobiologia, 621, 63–73.Google Scholar
  21. Jedlička, L., Országh, I., Čejka, T., Darolová, A., Kulfan, M., Mikulíček, P., Šustek, Z., & Žiak, D. (1999). Terestrial fauna. In I. Mucha (Ed.), Gabčíkovo part of the hydroelectric power project environmental impact review (pp. 119–142). Bratislava: Ground water consulting, Ltd..Google Scholar
  22. Junk, W. J., Bayley, P. B., & Sparks, R. E. (1989). The flood-pulse concept in river-floodplain systems. In D. P. Dodge (Ed.), Proceedings of the international large river symposium (LARS) (pp. 110–127). Canadian Journal of Fisheries and Aquatic Sciences Special Publication 106.Google Scholar
  23. Jurko, A. (1958a). Pôdne ekologické pomery a lesné spoločenstvá Podunajskej nížiny. Bratislava: Vydavateľstvo SAV.Google Scholar
  24. Jurko, A. (1958b). Vplyv Dunaja na životné prostredie priľahlých území. Životné Prostredie, 12, 179–183.Google Scholar
  25. Kalúz, S. (1994). Soil mites (Acarina) of Kralovska luka Forest in floodplain near Gabcikovo power plant (Slovakia). Biologia (Slovakia), 49, 193–199.Google Scholar
  26. Kopeć, D., Ratajczyk, N., Wolańska-Kamińska, A., Walisch, M., & Kruk, A. (2014). Floodplain forest vegetation response to hydroengineering and climatic pressure – a five decade comparative analysis in the Bzura River valley (Central Poland). Forest Ecology and Management, 314, 120–130.Google Scholar
  27. Krno, I., Beracko, P., Navara, T., Šporka, F., & Mišíková Elexová, E. (2018). Changes in species composition of the water insects during 25-year monitoring of the Danube floodplains affected by the Gabčíkovo waterworks. Environmental Monitoring and Assessment, 190(7), 412. Scholar
  28. Krumpálová, Z. (1997). Epigeic spiders (Araneae) of the inundation of the Danube River, on the area of interest of the Gabcikovo waterworks, 1: Before the waterworks were put into operation. Ekologia (Slovakia), 16, 147–162.Google Scholar
  29. Lisický, M. J. (1991). Mollusca Slovenska. Bratislava: Veda.Google Scholar
  30. Lisický, M. J. (1995). Problémy adaptívneho manažmentu prírodného prostredia ovplyvneného vodným dielom Gabčíkovo. In A. Svobodová & M. J. Lisický (Eds.), Výsledky a skúsenosti z monitorovania bioty ovplyvneného VD Gabčíkovo (pp. 75–82). Bratislava: ÚZE SAV.Google Scholar
  31. Lundqvist, J. (1998). Avert looming hydrocide. Ambio, 27, 428–433.Google Scholar
  32. Martin, K., & Sommer, M. (2004). Relationships between land snail assemblage patterns and soil properties in temperate-humid forest ecosystems. Journal of Biogeography, 31, 531–545.Google Scholar
  33. Matečný, I., & Bedrna, Z. (2014). Development in the moisture regime on selected sites affected by Gabčíkovo Waterworks (in Slovak). Geografický Časopis/Geographical Journal, 66, 305–320.Google Scholar
  34. Morecroft, M. D., Bealey, C. E., Howells, O., Rennie, S., & Woiwod, I. P. (2002). Effects of drought on contrasting insect and plant species in the UK in the mid-1990s. Global Ecology and Biogeography, 11(1), 7–22.Google Scholar
  35. Naiman, R. J., Magnuson, J. J., McKnight, D. M., & Stanford, J. A. (1995). The freshwater imperative: a research agenda. Washington, DC: Island Press.Google Scholar
  36. Obrdlík, P., Falkner, G., & Castella, E. (1995). Biodiversity of Gastropoda in European floodplains. Archiv für Hydrobiologie, 101, 339–356.Google Scholar
  37. Oksanen, J., Blanchett, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. M., & Wagner H. (2012). Vegan: community ecology package. R Package 2.0.3, Accessed 13 May 2018.
  38. Petrášová-Šibíková, M., Matečný, I., Uherčíková, E., Pišút, P., Kubalová, S., Valachovič, M., Hodálová, I., Mereďa, P., Bisbing, S. M., & Medvecká, J. (2017). Effect of the Gabčíkovo Waterworks (Slovakia) on riparian floodplain forest ecosystems in the Danube inland delta: vegetation dynamics and trends. Biologia, 72, 722–734.Google Scholar
  39. Pišút, P., & Timár, G. (2007). História územia ostrova Kopáč. In O. Majzlan (Ed.), Príroda ostrova Kopáč (pp. 7–30). Bratislava: Fytoterapia OZ.Google Scholar
  40. Poff, N. L., & Zimmermann, J. K. H. (2009). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater Biology, 55(1), 194–205.Google Scholar
  41. Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., & Stromberg, J. C. (1997). The natural flow regime. BioScience, 47, 769–784.Google Scholar
  42. Poff, N. L., Olden, J. D., Merritt, D. M., & Pepin, D. M. (2007). Homogenization of regional river dynamics by dams and global biodiversity implications. Proceedings of the National Academy of Sciences, 104(14), 5732–5737.Google Scholar
  43. Puckridge, J. T., Sheldon, F., Walker, K. F., & Boulton, A. J. (1998). Flow variability and the ecology of large rivers. Marine and Freshwater Research, 49, 55–72.Google Scholar
  44. R Core Team. (2014). R: A language and environment for statistical computing. In R Foundation for statistical computing. Vienna: Austria URL Accessed 25 Jan 2018.
  45. Richter, B. D., Baumgartner, J. V., Wigington, R., & Braun, D. P. (1997). How much water does a river need? Freshwater Biology, 37, 231–249.Google Scholar
  46. Rood, S. B., Hillman, C., Sanche, T., & Mahoney, J. M. (1994). Clonal reproduction of riparian cottonwoods in southern Alberta. Canadian Journal of Botany, 72, 1766–1774.Google Scholar
  47. Scott, M. L., Auble, G. T., & Friedman, J. M. (1997). Flood dependency of cottonwood establishment along the Missouri River, Montana, USA. Ecological Applications, 7, 677–690.Google Scholar
  48. Silvan, N., Laiho, R., & Vasander, H. (2000). Changes in mesofauna abundance in peat soils drained for forestry. Forest Ecology and Management, 133(1–2), 127–133.Google Scholar
  49. Sparks, R. E. (1995). Need for ecosystem management of large rivers and floodplains. BioScience, 45, 168–182.Google Scholar
  50. Šustek, Z. (1995). Diversity and survival of carabid communities in the area affected by the barrage system Gabčíkovo. In I. Mucha (Ed.) Gabčíkovo part of the hydroelectric power project environmental impact review (pp. 261–264). Bratislava: Faculty of natural Sciences, Comenius University.Google Scholar
  51. Tockner, K., Schiemer, F., Baumgartner, C., Kum, G., Weigand, E., Zweimüller, I., & Ward, J. V. (1999). The Danube restoration project: species diversity patterns across connectivity gradients in the floodplain system. Regulated Rivers: Research & Management, 15(1), 245–258.Google Scholar
  52. Vale, V. S., Schiavini, I., Araujo, G. M., Gussons, A. E., Lopes, S. F., Oliveira, A. P., Prado, J. A., Arantes, C. S., & Dias-Neto, O. C. (2015). Effects of reduced water flow in a riparian forest community: a conservation approach. Journal of Tropical Science, 27, 13–24.Google Scholar
  53. Wallace, J. B. (1990). Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management, 14, 605–620.Google Scholar
  54. Ward, J. V. (1998). Riverine landscapes: biodiversity patterns, disturbance regimes, and aquatic conservation. Biological Conservation, 83, 269–278.Google Scholar
  55. Ward, J. V., & Tockner, K. (2001). Biodiversity: towards a unifying theme for river ecology. Freshwater Biology, 46, 807–819.Google Scholar
  56. Ward, J. V., Tockner, K., & Schiemer, F. (1999). Biodiversity of floodplain ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management, 15, 125–139.Google Scholar
  57. Wardhaugh, A. A. (1995). The terrestrial molluscan fauna of some woodlands in north east Yorkshire, England. Journal of Conchology, 35, 313–327.Google Scholar
  58. Wäreborn, I. (1969). Land molluscs and their environments in an oligotrophic area in southern Sweden. Oikos, 20, 461–479.Google Scholar
  59. Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon, 21, 213–251.Google Scholar
  60. WWF. (1997). How to save the Danube floodplains: the impact of the Gabcikovo Hydrodam System over five years? Vienna: WWF Statement.Google Scholar
  61. Zuzulová, V., & Šiška, B. (2017). Identification of drought in western Slovakia by palmer drought severity index (PDSI). Acta Regionalia et Environmentalica, 1, 7–14.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Plant Science and Biodiversity CenterThe Slovak Academy of Sciences, Institute of BotanyBratislavaSlovakia
  2. 2.Faculty of Natural Sciences, Department of EcologyComenius UniversityBratislavaSlovakia
  3. 3.Faculty of Natural Sciences, Department of Physical Geography and GeoecologyComenius UniversityBratislavaSlovakia

Personalised recommendations