Advertisement

Algal characterization and bioaccumulation of trace elements from polluted water

  • Yaman Kumar Sahu
  • Khageshwar Singh PatelEmail author
  • Pablo Martín-Ramos
  • Magdalena Rudzińska
  • Paweł Górnaś
  • Erick Kibet Towett
  • Jesús Martín-Gil
  • Monika Tarkowska-Kukuryk
Article
  • 79 Downloads

Abstract

Algae are a group of autotropic and eukaryotic organisms that play a significant role in the food, pharmaceutical, cosmetic, fuel, and textile industries. They are an important part of our ecosystem, and they can help control the growing problem of pollution. In this work, the carotenoid, sterol, polyphenol and mineral content, spectral and thermal characteristics of six common river algae, viz. Chara spp., Hydrodictyon spp., Lyngbya spp., Nitella spp., Pithophora spp., and Spirogyra spp., collected from Kharun river (India), were evaluated. The concentration of oil, total polyphenols, flavonoids, and mineral ranged from 0.4 to 4.3%, from 2705 to 4450 mg/kg, from 1590 to 2970 mg/kg, and from 85,466 to 122,871 mg/kg of algae (dw), respectively. The concentration of carotenoids and sterols varied from 1.6 to 109 mg/kg and from 522 to 35,664 mg/kg. The potentiality towards the bioaccumulation of 22 trace elements from the surface reservoir was assessed and discussed in relation to carbonate inlay of the algae wall and to the ions ability to bind to pectin, polypeptides, carotenoids, polyphenols, and flavonoids, on the basis of infrared spectroscopy data. In view of the extremely high enrichment factors found for certain elements, such as P, Co, Cu, Pb, and Fe, some of these algae hold promise as bioindicators for the detection of these elements in aquatic environments. Ordination analysis was used to measure the variance gradient of the algal data.

Keywords

Algae Spectral and thermal characteristics Bioactive compounds Trace elements Water Phytoremediation 

Notes

Acknowledgments

KSP gratefully acknowledges UGG, New Delhi, for the financial support through BSR grant no. F.18-1/2011(BSR)2016.

References

  1. Al-Homaidan, A. A., Alabdullatif, J. A., Al-Hazzani, A. A., Al-Ghanayem, A. A., & Alabbad, A. F. (2015). Adsorptive removal of cadmium ions by Spirulina platensis dry biomass. Saudi Journal of Biological Sciences, 22, 795–800.  https://doi.org/10.1016/j.sjbs.2015.06.010.CrossRefGoogle Scholar
  2. AOCS (American Oil Chemists' Society) Official Method Ce 1h-05. (2005). Determination of cis-, trans-, saturated, monounsaturated and polyunsaturated fatty acids in vegetable or non-ruminant animal oils and fats by capillary GLC. Official methods and recommended practices of the American Oil Chemists’ Society, 5th ed., American Oil Chemists’ Society, Urbana.Google Scholar
  3. AOCS (American Oil Chemists’ Society) Official Method Ch 6-91. (1997). Determination of the composition of the sterol fraction of animal and vegetable oils and fats by TLC and capillary GLC. Official methods and recommended practices of the American Oil Chemists’ Society, 4th ed., American Oil Chemists’ Society, USA.Google Scholar
  4. APHA: American Public Health Association. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington: APHA, AWWA and WEF.Google Scholar
  5. Azza, M., Abdel, A., Nabila, S. A., Hany, H. A. G., & Rizka, K. A. (2013). Biosorption of cadmium and lead from aqueous solution by fresh water alga Anabaena sphaerica biomass. Journal of Advanced Research, 4, 367–374.  https://doi.org/10.1016/j.jare.2012.07.004.CrossRefGoogle Scholar
  6. BIS (Bureau of Indian Standard). (2009). Drinking water—specification (2nd ed.). New Delhi: http://bis.org.in/sf/fad/FAD25(2047)C.pdf.
  7. Brahmbhatt, Rinku, N. H., Patel, V., & Jasrai, R. T. (2012). Removal of cadmium, chromium and lead from filamentous alga of Pithophora sp. of industrial wastewater. International Journal of Environmental Sciences, 3, 408–411.  https://doi.org/10.6088/ijes.2012030131035.CrossRefGoogle Scholar
  8. Bruker AXS (2008). Cost-effective trace element analysis with TXRF, Brucker 2008. https://www.bruker.com/fileadmin/user_upload/8-PDF-Docs/X-rayDiffraction_ ElementalAnalysis/XRF/Webinars/Bruker_AXS_TXRF_Webinar_2-20-2008.PDF.
  9. Chang, C. C., Yang, M. H., Wen, H. M., & Chern, J. C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.Google Scholar
  10. Cheng, S. Y., Show, P.-L., Lau, B. F., Chang, J.-S., & Ling, T. C. (2019). New prospects for modified algae in heavy metal adsorption. Trends in Biotechnology, 37(11), 1255–1268.  https://doi.org/10.1016/j.tibtech.2019.04.007.CrossRefGoogle Scholar
  11. Desikachary, T. V. (1959). Cyanophyta. New Delhi: Indian Council of Agricultural Research https://trove.nla.gov.au/version/10699971.Google Scholar
  12. Dhillon, M. K., George, M. P., & Mishra, S. (2013). Water quality of river Yamuna – Delhi stretch during idol immersion. International Journal of Environmental Sciences, 3, 1416–1423.  https://doi.org/10.6088/ijes.2013030500012.CrossRefGoogle Scholar
  13. Dora, S. L., Maiti, S. K., Tiwary, R. K., & Anshumali (2010). Algae as an indicator of river water pollution- a review. Bioscan, 2, 413–422.Google Scholar
  14. Elmer, P. (2014). Pyris - instrument managing software (11th ed.). Waltham: PerkinElmer, Inc..Google Scholar
  15. Ficarra, R., Ficarra, P., Tommasini, S., & Rapisarda, A. (1995). Leaf extracts of some cardia species: analgesic and antiimflamatory activities as well as their chromatographic analysis. Il Farmaco. Edizione scientifica, 50, 245–256.Google Scholar
  16. Giri, S., & Singh, A. K. (2014). Assessment of surface water quality using heavy metal pollution index in Subarnarekha river, India. Water Quality Exposure and Health, 5, 173–182.  https://doi.org/10.1007/s12403-013-0106-2.CrossRefGoogle Scholar
  17. Gomes, P. I., & Asaeda, T. (2013). Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products. Chemosphere, 92, 1328–1334.  https://doi.org/10.1016/j.chemosphere.2013.05.043.CrossRefGoogle Scholar
  18. Górnaś, P., Siger, A., Czubinski, J., Dwiecki, K., Segliņa, D., & Nogala-Kalucka, M. (2014). An alternative RP-HPLC method for the separation and determination of tocopherol and tocotrienol homologues as butter authenticity markers: a comparative study between two European countries. European Journal of Lipid Science and Technology, 116, 895–903.  https://doi.org/10.1002/ejlt.201300319.CrossRefGoogle Scholar
  19. Górnaś, P., Rudzińska, M., Raczyk, M., Mišina, I., Soliven, A., & Segliņa, D. (2016). Composition of bioactive compounds in kernel oils recovered from sour cherry (Prunus cerasus L.) by-products: Impact of the cultivar on potential applications. Industrial Crops and Products, 82, 44–50.  https://doi.org/10.1016/j.indcrop.2015.12.010.CrossRefGoogle Scholar
  20. Jin-fen, P., Rong-gen, L., & Li, M. A. (2000). A review of heavy metal adsorption by marine algae. Chinese Journal of Oceanology and Limnology, 18, 260–264.  https://doi.org/10.1007/BF02842673.CrossRefGoogle Scholar
  21. Karthick, B., Boominathan, M., Sameer, A., & Ramachandra, T. V. (2010). Evaluation of the quality of drinking water in Kerala state, India. Asian Journal of Water, Environment and Pollution, 7, 39–48.Google Scholar
  22. Khummongkol, D., Canterford, G. S., & Fryer, C. (1982). Accumulation of heavy metals in unicellular algae. Biotechnology and Bioengineering, 24, 2643–2660.  https://doi.org/10.1002/bit.260241204.CrossRefGoogle Scholar
  23. Kibria, G. (2016). Trace metals/heavy metals and its impact on environment, biodiversity and human health -a short review.  https://doi.org/10.13140/RG.2.1.3102.2568.
  24. Kumar, A., Tak, P. C., & Sati, J. P. (2006). Residential, population and conservation status of Indian wetland birds. In G. C. Boere, C. A. Galbraith, & D. A. Stroud (Eds.), Water birds around the world (p. 308). Edinburgh: The Stationery Office.Google Scholar
  25. Kumar, P., Kaushal, R. K., & Nigam, A. K. (2015). Assessment and management of Ganga river water quality using multivariate statistical techniques in India. Asian Journal of Water, Environment and Pollution, 12, 61–69.  https://doi.org/10.3233/AJW-150018.CrossRefGoogle Scholar
  26. Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V., & Lednev, I. K. (2013). Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst, 138, 1665–1673.  https://doi.org/10.1039/C2AN36478F.CrossRefGoogle Scholar
  27. Lee, C. K., Low, K. S., & Hew, N. S. (1991). Accumulation of arsenic by aquatic plants. Science of the Total Environment, 103, 215–227.  https://doi.org/10.1016/0048-9697(91)90147-7.CrossRefGoogle Scholar
  28. Lepš, J., & Šmilauer, P. (2003). Multivariate analysis of ecological data using CANOCO. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. Malschi, D., Muntean, L., Oprea, I., Roba, C., Popiţa, G., Ştefănescu, L., Malschi, F., & Rînba, E. (2018). Research on wastewaters bioremediation with aquatic species for constructed wetlands. Environmental Engineering and Management Journal, 17, 1753–1764.  https://doi.org/10.30638/eemj.2018.174.CrossRefGoogle Scholar
  30. Meitei, M. D., & Prasad, M. N. V. (2013). Lead (II) and cadmium (II) biosorption on Spirodelapolyrhiza (L.) Schleiden biomass. Journal of Environmental Chemical Engineering, 1, 200–207.  https://doi.org/10.1016/j.jece.2013.04.016.CrossRefGoogle Scholar
  31. Mira, L., Fernandez, M. T., Santos, M., Rocha, R., Florêncio, M. H., & Jennings, K. R. (2002). Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radical Research, 36, 1199–1208.  https://doi.org/10.1080/1071576021000016463.CrossRefGoogle Scholar
  32. Mise, S. R., & Mujawar, S. (2017). Evaluation of water quality of Kharun river stretch near the Raipur city. International Research Journal of Engineering Technology, 4, 1071–1078.  https://doi.org/10.13140/rg.2.2.29028.83842.CrossRefGoogle Scholar
  33. Nollet, L. M. L., & De Gelder, L. S. P. (2007). Handbook of water analysis (2nd ed.). Boca Raton: CRC Press.  https://doi.org/10.1201/9781420006315.CrossRefGoogle Scholar
  34. Olal, F. O. (2016). Biosorption of selected heavy metals using green algae, Spirogyra species. Journal of Nature and Science, 6, 22–34.Google Scholar
  35. Rai, U. N., & Chandra, P. (1992). Accumulation of copper, lead, manganese and iron by field populations of Hydrodictyon reticulatum (Linn.) Lagerheim. Science of the Total Environment, 116, 203–211.  https://doi.org/10.1016/0048-9697(92)90449-3.CrossRefGoogle Scholar
  36. Reza, R., & Singh, G. (2010). Heavy metal contamination and its indexing approach for river water. International journal of Environmental Science and Technology, 7, 785–792.  https://doi.org/10.1007/BF03326187.CrossRefGoogle Scholar
  37. Roeges, N. P. G. (1994). A guide to the complete interpretation of infrared spectral of organic structures (p. 1994). Hoboken: Wiley.Google Scholar
  38. Rousseau, R. M. (2001). Detection limit and estimate of uncertainty of analytical XRF results. Rigaku Journal, 18(2), 33–47.Google Scholar
  39. Shah, K. A., & Joshi, G. S. (2017). Evaluation of water quality index for River Sabarmati, Gujarat, India. Applied Water Science, 7, 1349–1358.  https://doi.org/10.1007/s13201-015-0318-7.CrossRefGoogle Scholar
  40. Shanab, S., Essa, A., & Shalaby, E. (2012). Bio-removal capacity of three heavy metals by some microalgae species (Egyptian isolates). Plant Signaling & Behavior, 7(3), 392–399.  https://doi.org/10.4161/psb.19173.CrossRefGoogle Scholar
  41. Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods in Enzymology, 299, 152–178.  https://doi.org/10.1016/S0076-6879(99)99017-1.CrossRefGoogle Scholar
  42. Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts (3rd ed.p. 347). Chichester: Wiley.Google Scholar
  43. Strauss, R. (1982). Résistance des Characées aux ions Zn2+. Hydrobiologia, 87, 201–204.  https://doi.org/10.1007/BF00007228.CrossRefGoogle Scholar
  44. Strauss, R. (1986). Sur l'accumulation de nickel et de cobalt par les Charades. Hydrobiologia, 141, 263–267.  https://doi.org/10.1007/BF00014220.CrossRefGoogle Scholar
  45. ter Braak, C. J. F., & Smilauer, P. (2002). CANOCO reference manual and user’s guide to canoco for windows: software for canonical community ordination (version 4.5), microcomputer power (p. 500). Ithaca.Google Scholar
  46. Towett, E. K., Shepherd, K. D., & Drake, B. L. (2016). Plant elemental composition and portable X-ray fluorescence (pXRF) spectroscopy: quantification under different analytical parameters. X-Ray Spectrometry, 45, 117–124.  https://doi.org/10.1002/xrs.2678.CrossRefGoogle Scholar
  47. Walter-Levy, L., & Strauss, R. (1974a). Recherches sur la précipitation des carbonates Alcalino-terreux chez les characées. Hydrobiologia, 45, 217–237.  https://doi.org/10.1007/BF00014003.CrossRefGoogle Scholar
  48. Walter-Levy, L., & Strauss, R. (1974b). Resistance des Characees aux effetstoxiques des ions Pb2+. Comptes Rendus de l'Académie des Sciences, 278, 2023–2026.Google Scholar
  49. Walter-Levy, L., & Strauss, R. (1975). Tolerance des Characees aux fortes concentrations du milieu en ions manganeux. Comptes Rendus de l'Académie des Sciences, 280, 1899–1902.Google Scholar
  50. WHO. (2011). Guidelines for Drinking-Water Quality (4th ed.). Geneva: World Health Organization http://www.who.int/water_sanitation_health/ publications/ 2011/dwq_chapters/en/.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yaman Kumar Sahu
    • 1
  • Khageshwar Singh Patel
    • 1
    Email author
  • Pablo Martín-Ramos
    • 2
  • Magdalena Rudzińska
    • 3
  • Paweł Górnaś
    • 4
  • Erick Kibet Towett
    • 5
  • Jesús Martín-Gil
    • 6
  • Monika Tarkowska-Kukuryk
    • 7
  1. 1.School of Studies in ChemistryPt. Ravishankar Shukla UniversityRaipurIndia
  2. 2.Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA)University of ZaragozaHuescaSpain
  3. 3.Institute of Food Technology of Plant Origin, Faculty of Food Science and NutritionPoznań University of Life SciencesPoznańPoland
  4. 4.Institute of HorticultureDobeleLatvia
  5. 5.World Agroforestry CentreNairobiKenya
  6. 6.Agriculture and Forestry Engineering DepartmentETSIIAA, Universidad de ValladolidPalenciaSpain
  7. 7.Department of Hydrobiology and Protection of EcosystemsUniversity of Life Science in LublinLublinPoland

Personalised recommendations