Advertisement

Utilizing geospatial information to implement SDGs and monitor their Progress

  • 102 Accesses

Abstract

It is more than 4 years since the 2030 agenda for sustainable development was adopted by the United Nations and its member states in September 2015. Several efforts are being made by member countries to contribute towards achieving the 17 Sustainable Development Goals (SDGs). The progress which had been made over time in achieving SDGs can be monitored by measuring a set of quantifiable indicators for each of the goals. It has been seen that geospatial information plays a significant role in measuring some of the targets, hence it is relevant in the implementation of SDGs and monitoring of their progress. Synoptic view and repetitive coverage of the Earth’s features and phenomenon by different satellites is a powerful and propitious technological advancement. The paper reviews robustness of Earth Observation data for continuous planning, monitoring, and evaluation of SDGs. The scientific world has made commendable progress by providing geospatial data at various spatial, spectral, radiometric, and temporal resolutions enabling usage of the data for various applications. This paper also reviews the application of big data from earth observation and citizen science data to implement SDGs with a multi-disciplinary approach. It covers literature from various academic landscapes utilizing geospatial data for mapping, monitoring, and evaluating the earth’s features and phenomena as it establishes the basis of its utilization for the achievement of the SDGs.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2

References

  1. Alaguraja, P., Yuvaraj, D., & Sekar, M. (2010). Remote sensing and GIS approach for the water pollution and management in Tiruchirappli Taluk, Tamil Nadu, India. International Journal of Environmental Science, 1, 66-70.

  2. Allen, C., Metternicht, G., & Wiedmann, T. (2019). Prioritising SDG targets: assessing baselines, gaps and interlinkages. Sustainability Science, 14(2), 421-438. https://doi.org/10.1007/s11625-018-0596-8.

  3. Angelsen, A., Brockhaus, M., Sunderlin, W. D., & Verchot, L. V. (2012). Analysing REDD+: challenges and choices. Cifor.

  4. Arroyo, J. A., Gomez-Castaneda, C., Ruiz, E., de Cote, E. M., Gavi, F., & Sucar, L. E. (2017, March). UAV technology and machine learning techniques applied to the yield improvement in precision agriculture. In 2017 IEEE Mexican Humanitarian Technology Conference (MHTC) (pp. 137-143). IEEE.

  5. Arslan, N. (2018). Assessment of oil spills using sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Environmental Monitoring and Assessment, 190(11), 637.

  6. Asensio, S. (1997). Targeting the poor-poverty indicators in a spatial context. Netherland: ITC.

  7. Avtar, R., Singh, C. K., Shashtri, S., Singh, A., & Mukherjee, S. (2010). Identification and analysis of groundwater potential zones in ken-Betwa river linking area using remote sensing and geographic information system. Geocarto International, 25(5), 379-396. https://doi.org/10.1080/10106041003731318.

  8. Avtar, R., Takeuchi, W., & Sawada, H. (2013). Full polarimetric PALSAR-based land cover monitoring in Cambodia for implementation of REDD policies. International Journal of Digital Earth, 6(3), 255-275. https://doi.org/10.1080/17538947.2011.620639.

  9. Blumenstock, J. E., Jean, N., Deaton, A., Banerjee, A., Donaldson, D., Storeygard, A., et al. (2016). Fighting poverty with data. Science, 353(6301), 790-794. https://doi.org/10.1126/science.aah5217.

  10. Brekke, C., & Solberg, A. H. S. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1), 1-13. https://doi.org/10.1016/j.rse.2004.11.015.

  11. Breuer, A., Janetschek, H., & Malerba, D. (2019). Translating sustainable development goal (SDG) interdependencies into policy advice. Sustainability (Switzerland), 11(7). https://doi.org/10.3390/su1102092.

  12. Brown, S. L., Schroeder, P., & Kern, J. S. (1999). Spatial distribution of biomass in forests of the eastern USA. Forest Ecology and Management, 123(1), 81-90. https://doi.org/10.1016/S0378-1127(99)00017-1.

  13. Brussel, M., Zuidgeest, M., Pfeffer, K., & van Maarseveen, M. (2019). Access or accessibility? A critique of the urban transport SDG indicator. ISPRS International Journal of Geo-Information, 8(2), 67. https://doi.org/10.3390/ijgi8020067.

  14. Cronforth Jack. (2015). Post-2015 Zero Draft_ Where Do We Stand on Citizen-Generated Data.. http://civicus.org/thedatashift/blog/post-2015-zero-draft-where-do-we-stand-on-citizen-generated-data/ (accessed on 28 July 2017).

  15. Dahdouh-guebas, F. (2002). The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. In Environment, development and sustainability (Vol. 4). https://doi.org/10.1023/A:1020887204285.

  16. Dangermond, B. J., & Artz, M. (2010). Climate change is a geographic problem the geographic approach to climate change. Esri, 32.

  17. DataShift. (2017). Using citizen-generated data to monitor the SDGs: a tool for the GPSDD data revolution roadmaps toolkit. Retrieved from http://www.data4sdgs.org/sites/default/files/2017-09/Making Use of Citizen-Generated Data - Data 4SDGs Toolbox Module.pdf.

  18. Development, I. (2017). Big data and SDGs: the state of play in Sri Lanka and India.

  19. Dovey, K. (2015). Sustainable informal settlements? Procedia - Social and Behavioral Sciences, 179(November), 5-13. https://doi.org/10.1016/j.sbspro.2015.02.406.

  20. Eagle, N., Macy, M., & Claxton, R. (2010). Network diversity and economic development. Science, 328(5981), 1029 LP-1021031.

  21. El-Batran, M., & Arandel, C. (2005). A shelter of their own: informal settlement expansion in greater Cairo and government responses. Environment and Urbanization, 10(1), 217-232. https://doi.org/10.1630/095624798101284392.

  22. Elvidge, C. D., Sutton, P. C., Ghosh, T., Tuttle, B. T., Baugh, K. E., Bhaduri, B., & Bright, E. (2009). A global poverty map derived from satellite data. Computers and Geosciences, 35(8), 1652-1660. https://doi.org/10.1016/j.cageo.2009.01.009.

  23. Engstrom, R. (2016). Poverty in HD: what does high- resolution satellite imagery reveal about poverty ?

  24. FAO. (2011). Assessing forest degradation: Towards the development of globally applicable guidelines. Forest Resourses Assessment, 99. https://doi.org/10.1023/B:VEGE.0000029381.63336.20.

  25. Food and Agriculture Organization (FAO). (2012). The state of world fisheries and aquaculture 2012. In Sofia. https://doi.org/10.5860/CHOICE.50-5350.

  26. FAO IFAD UNICEF, W. & W. (2017). The state of food security and nutrition in the world. In Fao.

  27. Ferguson, R. L., & Korfmacher, K. (1997). Remote sensing and GIS analysis of seagrass meadows in North Carolina, USA. Aquatic Botany, 58(3-4), 241-258. https://doi.org/10.1016/S0304-3770(97)00038-7.

  28. Finlayson, C. M. (2016). Millennium ecosystem assessment. In The wetland book. https://doi.org/10.1007/978-94-007-6172-8_81-1.

  29. Flückiger, Y., & Seth, N. (2016). Sustainable development goals: SDG indicators need crowdsourcing. Nature, 531(7595), 448. https://doi.org/10.1038/531448c.

  30. Gallo, J. L., & Ertur, C. (2003). Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995. Papers in Regional Science, 201(2), 175-201. https://doi.org/10.1111/j.1467-8276.2006.00866.x.

  31. Gaugliardo, M. (2004). Spatial accessibility of primary care: concepts , methods and challenges. International Journal of Health Geographics, 13, 1-13.

  32. Gonzalez D. L., 2012. ForestWatchers.net a citizen project for forest monitoring. https://blog.okfn.org/2012/10/01/forestwatchers-net-a-citizen-project-for-forest-monitoring/ (access on 21 November, 2017).

  33. Habitat, U. (2015). Governing council of the United Nations settlements Programme, twenty fifth session Nairobi, 17-23 April 2015 item 6 of the provisional agenda.

  34. Haslauer, E., Biberacher, M., & Blaschke, T. (2012). GIS-based Backcasting: an innovative method for parameterisation of sustainable spatial planning and resource management. Futures, 44(4), 292-302. https://doi.org/10.1016/j.futures.2011.10.012.

  35. Howell, E. A., Kobayashi, D. R., Parker, D. M., Balazs, G. H., & Polovina, J. J. (2008). TurtleWatch: a tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery. Endangered Species Research, 5(2-3), 267-278. https://doi.org/10.3354/esr00096.

  36. INSTITUTE, M., & MERIDIAN INSTITUTE. (2009). Reducing emissions from deforestation and forest degradation (REDD): an options assessment report. In Ecological Modelling (Vol. 6). https://doi.org/10.1088/1755-1307/6/25/252020.

  37. (ISO), O. G. C. (OGC); T. I. O. for S., And, T. T. C. 211 G. information/Geomatics; & (IHO), I. H. O. (2015). A guide to the role of standards in geospatial information management.

  38. Jaramillo, V. J., Kauffman, J. B., Rentería-Rodríguez, L., Cummings, D. L., & Ellingson, L. J. (2003). Biomass, carbon, and nitrogen pools in Mexican tropical dry forest landscapes. Ecosystems, 6(7), 609-629. https://doi.org/10.1007/s10021-002-0195-4.

  39. Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., & Daszak, P. (2008). Global trends in emerging infectious diseases. Nature, 451(7181), 990-993. https://doi.org/10.1038/nature06536.

  40. Jotzo, F. (2013). Keep Australia’s carbon pricing. Nature, 502(7469), 38-38. https://doi.org/10.1038/502038a.

  41. Kääb, A. (2002). Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: Examples using digital aerial imagery and ASTER data. ISPRS Journal of Photogrammetry and Remote Sensing, 57(1-2), 39-52. https://doi.org/10.1016/S0924-2716(02)00114-4.

  42. Kaab, A., Huggel, C. and, & Fischer, L (2006). Remote sensing technologies for monitoring climate change impacts on glacier- and permafrost-related hazards. ECI Conference on Geohazards, 10.

  43. Karanja, I. (2010). An enumeration and mapping of informal settlements in Kisumu, Kenya, implemented by their inhabitants. Environment and Urbanization, 22(1), 217-239. https://doi.org/10.1177/0956247809362642.

  44. Kharas, Homi. Gerlach, Karina. Elgin-Cossart, M. (2013). Economies through sustainable development a new global partnership: the report of the high-level panel of eminent persons on.

  45. Kharrazi, A., Qin, H., & Zhang, Y. (2016). Urban big data and sustainable development goals: challenges and opportunities. Sustainability, 8(12), 1293. https://doi.org/10.3390/su8121293.

  46. Kitchin, R. (2014). Big data, new epistemologies and paradigm shifts. Big Data & Society, 1(1), 205395171452848. https://doi.org/10.1177/2053951714528481.

  47. Koch, F., & Krellenberg, K. (2018). How to contextualize SDG 11? Looking at indicators for sustainable urban development in Germany. ISPRS International Journal of Geo-Information, 7(12), 464. https://doi.org/10.3390/ijgi7120464.

  48. Kuffer, M., Wang, J., Nagenborg, M., Pfeffer, K., Kohli, D., Sliuzas, R., & Persello, C. (2018). The scope of earth-observation to improve the consistency of the SDG slum indicator. ISPRS International Journal of Geo-Information, 7(11), 428. https://doi.org/10.3390/ijgi7110428.

  49. Kuffer, M., Pfeffer, K., & Sliuzas, R. (2016). Slums from space—15 years of slum mapping using remote sensing. Remote Sensing, 8(6), 455.

  50. KUSUMANINGTYAS, R., KOBAYASHI, S., & TAKEDA, S. (2009). The impact of local community agricultural practices on livelihood security and forest degradation around the Tesso Nilo national park in Riau Province, Sumatra, Indonesia. Tropics, 18(2), 45-55. https://doi.org/10.3759/tropics.18.45.

  51. Lehmann, A., Chaplin-Kramer, R., Lacayo, M., Giuliani, G., Thau, D., Koy, K., et al. (2017). Lifting the information barriers to address sustainability challenges with data from physical geography and earth observation. Sustainability, 9. https://doi.org/10.3390/su9050858.

  52. Liu, J., Fritz, S., van Wesenbeeck, C. F. A., Fuchs, M., You, L., Obersteiner, M., & Yang, H. (2008). A spatially explicit assessment of current and future hotspots of hunger in sub-Saharan Africa in the context of global change. Global and Planetary Change, 64(3-4), 222-235. https://doi.org/10.1016/j.gloplacha.2008.09.007.

  53. Lu, Y., Nakicenovic, N., Visbeck, M., & Stevance, A.-S. (2015). Five priorities for the UN sustainable development goals. Nature, 520(April 2015), 432-433.

  54. Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., & Zomaya, A. (2014). Remote sensing big data computing: challenges and opportunities. 51, 47-60.

  55. MacFeely, S. (2019). The big (data) bang: opportunities and challenges for compiling SDG indicators. Global Policy, 10(January), 121-133. https://doi.org/10.1111/1758-5899.12595.

  56. Machiwal, D., Jha, M. K., & Mal, B. C. (2011). Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resources Management, 25(5), 1359-1386. https://doi.org/10.1007/s11269-010-9749-y.

  57. Martos, A., Pacheco-Torres, R., Ordóñez, J., & Jadraque-Gago, E. (2016). Towards successful environmental performance of sustainable cities: intervening sectors. A review. Renewable and Sustainable Energy Reviews, 57, 479-495. https://doi.org/10.1016/j.rser.2015.12.095.

  58. Masó, J., Serral, I., Domingo-Marimon, C., & Zabala, A. (2019). Earth observations for sustainable development goals monitoring based on essential variables and driver-pressure-state-impact-response indicators. International Journal of Digital Earth, 1-19. https://doi.org/10.1080/17538947.2019.1576787.

  59. Maude, R. J., Nguon, C., Ly, P., Bunkea, T., Ngor, P., Canavati De La Torre, S. E., et al. (2014). Spatial and temporal epidemiology of clinical malaria in Cambodia 2004-2013. Malaria Journal, 13(1), 1-15. https://doi.org/10.1186/1475-2875-13-385.

  60. Maurice, J. (2016). Measuring progress towards the SDGs-a new vital science. Lancet (London, England), 388(10053), 1455-1458. https://doi.org/10.1016/S0140-6736(16)31791-3.

  61. Minot, N., & Baulch, B. (2005). Poverty mapping with aggregate census data: what is the loss in precision? Review of Development Economics, 9(March 2002), 5-24. https://doi.org/10.1111/j.1467-9361.2005.00261.x.

  62. Njuguna, C., & McSharry, P. (2017). Constructing spatiotemporal poverty indices from big data. Journal of Business Research, 70, 318-327. https://doi.org/10.1016/j.jbusres.2016.08.005.

  63. Nhamo, L., van Dijk, R., Magidi, J., Wiberg, D., & Tshikolomo, K. (2018). Improving the accuracy of remotely sensed irrigated areas using post-classification enhancement through UAV capability. Remote Sensing, 10(5), 712.

  64. Nobre, C., Brasseur, G. P., Shapiro, M. A., Lahsen, M., Brunet, G., Busalacchi, A. J., et al. (2010). Addressing the complexity of the earth system. Bulletin of the American Meteorological Society, 91(10), 1389-1396.

  65. Nubé, M., & Sonneveld, B. G. J. S. (2005). The geographical distribution of underweight children in Africa. Bulletin of the World Health Organization, 83(10), 764-770.

  66. Okwi, P. O., Ndeng’e, G., Kristjanson, P., Arunga, M., Notenbaert, A., Omolo, A., et al. (2007). Spatial determinants of poverty in rural Kenya. Proceedings of the National Academy of Sciences, 104(43), 16769-16774. https://doi.org/10.1073/pnas.0611107104.

  67. Orimoloye, I. R., Mazinyo, S. P., Nel, W., & Kalumba, A. M. (2018). Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: human health implications for East London, South Africa. Environmental Earth Sciences, 77(3), 77-10. https://doi.org/10.1007/s12665-018-7252-6.

  68. Paganini, M., Petiteville, I., Ward, S., Dyke, G., Steventon, M., Harry, J., & Flora Kerblat. (2018). Sattelite earth observations of the sustainable development goals - special 2018 edition, 107.

  69. Paulson, B. (1992). Urban applications of remote sensing and GIS analysis. In Urban management programme.

  70. Quincey, D. J., Lucas, R. M., Richardson, S. D., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2005). Optical remote sensing technoques in high - mountains: application to glacial hazards. Pregress in Physical Geography, 29, 475-505.

  71. Rau, J. Y., & Cheng, C. K. (2013). A cost-effective strategy for multi-scale photo-realistic building modeling and web-based 3-D GIS applications in real estate. Computers, Environment and Urban Systems, 38(1), 35-44. https://doi.org/10.1016/j.compenvurbsys.2012.10.006.

  72. Rebelo, L. M., Finlayson, C. M., & Nagabhatla, N. (2009). Remote sensing and GIS for wetland inventory, mapping and change analysis. Journal of Environmental Management, 90(7), 2144-2153. https://doi.org/10.1016/j.jenvman.2007.06.027.

  73. Reusing, M. (2000). Change detection of natural high forests in Ethiopia using remote sensing and GIS techniques. international archives of photogrammetry and remote sensing, XXXIII (part B7), 1253-1258. Retrieved from file:///C:/Users/Ram Avtar/AppData/Local/Mendeley Ltd./Mendeley Desktop/Downloaded/Reusing - 2000 - Change Detection of Natural High Forests in Ethiopia Using Remote Sensing and GIS Techniques.pdf.

  74. Riitters, K., Wickham, J., Costanza, J. K. K., & Vogt, P. (2016). A global evaluation of forest interior area dynamics using tree cover data from 2000 to 2012. Landscape Ecology, 31(1), 137-148. https://doi.org/10.1007/s10980-015-0270-9.

  75. Romano, J. (2015). People-centred post-2015 review & accountability with transparency and citizen participation at its core.

  76. Rosero-Bixby, L. (2004). Spatial access to health care in Costa Rica and its equity: Aa GIS-based study. Social Science and Medicine, 58(7), 1271-1284. https://doi.org/10.1016/S0277-9536(03)00322-8.

  77. Saitoh, S. I. S.-I. I., Mugo, R., Radiarta, I. N. N., Asaga, S., Takahashi, F., Hirawake, T., et al. (2011). Some operational uses of satellite remote sensing and marine GIS for sustainable fisheries and aquaculture. ICES Journal of Marine Science, 68(4), 687-695. https://doi.org/10.1093/icesjms/fsq190.

  78. Santens, S. (2011). 6 mind-blowing discoveries made using Google Earth. https://www.cracked.com/article_19299_6-mind-blowing-discoveries-made-using-google-earth.html (accessed on 29 October, 2017).

  79. Saraf, A. K., & Choudhury, P. R. (1998). Integrated remote sensing and GIS for groundwater exploration and identification of artificial recharge sites. International Journal of Remote Sensing, 19(10), 1825-1841. https://doi.org/10.1080/014311698215018.

  80. Scott, G., & Rajabifard, A. (2017). Sustainable development and geospatial information: a strategic framework for integrating a global policy agenda into national geospatial capabilities. Geo-Spatial Information Science, 20(2), 59-76. https://doi.org/10.1080/10095020.2017.1325594.

  81. Shimada, M., Itoh, T., Motooka, T., Watanabe, M., Shiraishi, T., Thapa, R., & Lucas, R. (2014). New global forest/non-forest maps from ALOS PALSAR data (2007-2010). Remote Sensing of Environment, 155, 13-31. https://doi.org/10.1016/j.rse.2014.04.014.

  82. Shittu, O. B. B., Akpan, I., Popoola, T. O. S. O. S., Oyedepo, J. A. A., & Oluderu, I. B. B. (2015). Application of Gis-Rs in bacteriological examination of rural community water supply and sustainability problems with UNICEF assisted borehole: a case study of Alabata community, South-western Nigeria. Journal of Public Health and Epidemiology, 2(December 2010), 238-244.

  83. Singh, J., Kumar, S., & Kushwaha, S. P. S. (2014). POLINSAR coherence-based regression analysis of forest biomass using RADARSAT-2 datasets. The international archives of photogrammetry, remote sensing and spatial information sciences, 40(8), 631.

  84. Skyland, N. (2012). What is NASA doing with big data today ?

  85. Soto, V., Frias-Martinez, V., Virseda, J., & Frias-Martinez, E. (2011). Prediction of socioeconomic levels using cell phone records BT - user modeling, adaption and personalization (J. A. Konstan, R. Conejo, J. L. Marzo, & N. Oliver, Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg.

  86. Strano, E., Viana, M. P., Sorichetta, A., & Tatem, A. J. (2018). Mapping road network communities for guiding disease surveillance and control strategies. Scientific Reports, 8(1), 4744. https://doi.org/10.1038/s41598-018-22969-4.

  87. Reddy, S. C., Jha, C. S. S., Dadhwal, V. K. K., Hari Krishna, P., Vazeed Pasha, S., Satish, K. V. V., et al. (2016). Quantification and monitoring of deforestation in India over eight decades (1930-2013). Biodiversity and Conservation, 25(1), 93-116. https://doi.org/10.1007/s10531-015-1033-2.

  88. Sugiyarto, G. (2007). Poverty impact analysis: selected tools and applications. Asian Development Bank.

  89. Sustainable Development Solutions Network (SDSN). (2014). Indicators and a monitoring framework for sustainable development goals - launching a data revolution for the SDGs. http://unsdsn.org/wp-content/uploads/2015/05/FINAL-SDSN-Indicator-Report-WEB.pdf (accessed on 8 April, 2017).

  90. Tatem, A. J. J., Bird, T. J. J., Bjelland, J., Bengtsson, L., Alegana, V. A. A., Iqbal, A. M. M., et al. (2017). Mapping poverty using mobile phone and satellite data. Journal of the Royal Society Interface, 14(127), 20160690. https://doi.org/10.1098/rsif.2016.0690.

  91. Thapa, R. B., Motohka, T., Watanabe, M., & Shimada, M. (2015). Time-series maps of aboveground carbon stocks in the forests of central Sumatra. Carbon Balance and Management, 10(1), 1-13. https://doi.org/10.1186/s13021-015-0034-5.

  92. Timo Lüge. (2014). GIS support for the MSF Ebola response in Guinea in 2014. Médecins Sans Frontières, (September).

  93. Tomás, H., Svatava, J., & Bedrich, M. (2016). Sustainable development goals: a need for relevant indicators. Ecological Indicators, 60, 565-573 Retrieved from https://ac.els-cdn.com/S1470160X15004240/1-s2.0-S1470160X15004240-main.pdf?_tid=5874b232-42fc-4d1d-9a1d-59edd3d53a1f&acdnat=1548884863_fafa2067cedf3efc6aa41119393f7e62.

  94. Ulugtekin, N., Bektas, F., Dogru, A. O., Goksel, C., & Alaton, I. A. (2005). The use of remote sensing and GIS technologies for comprehensive wastewater management.

  95. UN Global Pulse. (2015). Mining citizen feedback data for enhanced local government decision-making. Global Pulse Project Series, 16, 1-2.

  96. UNEP. (2017). Citizen science helps ecosystem renewal in Kenya _ UN environment.

  97. United Nations, & Nations, U. (2015). Transforming our world: the 2030 agenda for sustainable development. In General assembley 70 session (Vol. 16301). https://doi.org/10.1007/s13398-014-0173-7.2.

  98. United Nations, Nations, U., & United Nations. (1992). United Nations framework convention on climate change. Fccc/Informal/84, 1(3), 270-277. https://doi.org/10.1111/j.1467-9388.1992.tb00046.x.

  99. United Nations Secretary. (2016). Science for sustainable development: policy brief by the Scientific Advisory Board of the UN Secretary-General; 2016. (October), 12.

  100. United Nations World Water Assessment Programme (WWAP). (2018). The United Nations world water development report 2018: nature based solutions for water. Paris: France, UNESCO 139pp.

  101. Wahl, T., Anderssen, T., & Skøelv, Å. (1994). Oil spill detection using satellite based SAR: pilot operation phase, final report. NDRE, January.

  102. Wang, F., & Luo, W. (2005). Assessing spatial and nonspatial factors for healthcare access: towards an integrated approach to defining health professional shortage areas. Health and Place, 11(2), 131-146. https://doi.org/10.1016/j.healthplace.2004.02.003.

  103. World Bank. (2016). World development indicators. 46. https://doi.org/10.1596/978-1-4648-0683-4.

  104. Xie, M., Jean, N., Burke, M., Lobell, D., & Ermon, S. (2015). Transfer learning from deep features for remote sensing and poverty mapping.

  105. Yu, F., Sun, W., Li, J., Zhao, Y., Zhang, Y., & Chen, G. (2017). An improved Otsu method for oil spill detection from SAR images. Oceanologia, 59(3), 311-317.

  106. Zeilhofer, P., & Piazza Topanotti, V. (2008). GIS and ordination techniques for evaluation of environmental impacts in informal settlements: a case study from Cuiabá, Central Brazil. Applied Geography, 28, 1-15. https://doi.org/10.1016/j.apgeog.2007.07.009.

Download references

Acknowledgments

This work is supported by the Office for Developing Future Research Leaders (L-Station), Hokkaido University and Faculty of Environmental Earth Science. The authors would like to thank Ashwani Aggarwal, Huynh Vuong Thu Minh, and students of UNU for their support. The authors extend sincere gratitude to the editor and anonymous reviewers for their constructive comments and valuable suggestions.

Author information

Correspondence to Ram Avtar.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 Satellite sensors and their characteristics

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avtar, R., Aggarwal, R., Kharrazi, A. et al. Utilizing geospatial information to implement SDGs and monitor their Progress. Environ Monit Assess 192, 35 (2020). https://doi.org/10.1007/s10661-019-7996-9

Download citation

Keywords

  • Sustainable development goals
  • Geospatial data and techniques
  • Geographic information system
  • Remote sensing
  • And indicators