Advertisement

PelagiCam: a novel underwater imaging system with computer vision for semi-automated monitoring of mobile marine fauna at offshore structures

  • Emma V. Sheehan
  • Danielle Bridger
  • Sarah J. Nancollas
  • Simon J. Pittman
Article

Abstract

Engineered structures in the open ocean are becoming more frequent with the expansion of the marine renewable energy industry and offshore marine aquaculture. Floating engineered structures function as artificial patch reefs providing novel and relatively stable habitat structure not otherwise available in the pelagic water column. The enhanced physical structure can increase local biodiversity and benefit fisheries yet can also facilitate the spread of invasive species. Clear evidence of any ecological consequences will inform the design and placement of structures to either minimise negative impacts or enhance ecosystem restoration. The development of rapid, cost-effective and reliable remote underwater monitoring methods is crucial to supporting evidence-based decision-making by planning authorities and developers when assessing environmental risks and benefits of offshore structures. A novel, un-baited midwater video system, PelagiCam, with motion-detection software (MotionMeerkat) for semi-automated monitoring of mobile marine fauna, was developed and tested on the UK’s largest offshore rope-cultured mussel farm in Lyme Bay, southwest England. PelagiCam recorded Atlantic horse mackerel (Trachurus trachurus), garfish (Belone belone) and two species of jellyfish (Chrysaora hysoscella and Rhizostoma pulmo) in open water close to the floating farm structure. The software successfully distinguished video frames where fishes were present versus absent. The PelagiCam system provides a cost-effective remote monitoring tool to streamline biological data acquisition in impact assessments of offshore floating structures. With the rise of sophisticated artificial intelligence for object recognition, the integration of computer vision techniques should receive more attention in marine ecology and has great potential to revolutionise marine biological monitoring.

Keywords

Monitoring aquaculture motion detection video analysis pelagic mussel farm ecosystem function 

Notes

Acknowledgements

We would like to thank our engineering technician, Julian Seipp, at University of Plymouth for help in the construction of the PelagiCam units. We are grateful for technical support from Dr Luke Holmes, Richard Ticehurst, Dr Martin Canty and Lyme Bay fishermen Robert King and Kieran Perree for field assistance and funding and logistical support from Offshore Shellfish Ltd.

References

  1. Ajemian, M. J., Wetz, J. J., Shipley-Lozano, B., Shively, J. D., & Stunz, G. W. (2015). An analysis of artificial reef fish community structure along the northwestern Gulf of Mexico shelf: potential impacts of “Rigs-to-Reefs” programs. PloS One, 10(5), e0126354.Google Scholar
  2. Anderson, M. J. (2014). Permutational multivariate analysis of variance (PERMANOVA) (pp. 1–15). Statistics Reference Online: Wiley StatsRef.Google Scholar
  3. Bicknell, A. W., Godley, B. J., Sheehan, E. V., Votier, S. C., & Witt, M. J. (2016). Camera technology for monitoring marine biodiversity and human impact. Frontiers in Ecology and the Environment, 14(8), 424–432.Google Scholar
  4. Bishop, M. J., Mayer-Pinto, M., Airoldi, L., Firth, L. B., Morris, R. L., Loke, L. H., Hawkins, S. J., Naylor, L. A., Coleman, R. A., Chee, S. Y., & Dafforn, K. A. (2017). Effects of ocean sprawl on ecological connectivity: impacts and solutions. Journal of Experimental Marine Biology and Ecology, 492, 7–30.Google Scholar
  5. Borja, Á., Rodríguez, J. G., Black, K., Bodoy, A., Emblow, C., Fernandes, T. F., Forte, J., Karakassis, I., Muxika, I., Nickell, T. D., & Papageorgiou, N. (2009). Assessing the suitability of a range of benthic indices in the evaluation of environmental impact of fin and shellfish aquaculture located in sites across Europe. Aquaculture, 293(3-4), 231–240.Google Scholar
  6. Bouchet, P. J., & Meeuwig, J. J. (2015). Drifting baited stereo-videography: a novel sampling tool for surveying pelagic wildlife in offshore marine reserves. Ecosphere, 6(8), 1–29.Google Scholar
  7. Bouwmans, T., Silva, C., Marghes, C., Zitouni, M. S., Bhaskar, H., & Frelicot, C. (2018). On the role and the importance of features for background modeling and foreground detection. Computer Science Review, 28, 26–91.Google Scholar
  8. Bouwmans, T., Javed, S., Sultana, M., & Jung, S. K. (2019). Deep neural network concepts for background subtraction: A systematic review and comparative evaluation. Neural Networks, 117, 866.Google Scholar
  9. Brickhill, M. J., Lee, S. Y., & Connolly, R. M. (2005). Fishes associated with artificial reefs: attributing changes to attraction or production using novel approaches. Journal of Fish Biology, 67, 53–71.Google Scholar
  10. Broadhurst, M., Barr, S., & Orme, C. D. L. (2014). In-situ ecological interactions with a deployed tidal energy device; an observational pilot study. Ocean & Coastal Management, 99, 31–38.Google Scholar
  11. Brooks, E. J., Sloman, K. A., Sims, D. W., & Danylchuck, A. J. (2011). Validating the use of baited remote underwater video surveys for assessing the diversity, distribution and abundance of sharks in the Bahamas. Endangered Species Research, 13, 231–243.Google Scholar
  12. Caddy, J. F. (1999). Fisheries management in the twenty-first century: will new paradigms apply? Reviews in Fish Biology and Fisheries, 9, 1–43.Google Scholar
  13. Capello, M., Soria, M., Cotel, P., Deneubourg, J. L., & Dagorn, L. (2011). Quantifying the interplay between environmental and social effects on aggregated-fish dynamics. PloS One, 6(12), e28109.Google Scholar
  14. Cappo, M., & Brown, I. (1996). Evaluation of sampling methods for reef fish populations of commercial and recreational interest. In CRC Reef Research Centre, Technical Report No. 6, CRC Reef Research Centre, Townsville, Queensland, Australia 72 pp.Google Scholar
  15. Cappo, M., Harvey, E., & Shortis, M. (2006). Counting and measuring fish with baited video techniques – an overview. In Australian Society for Fish Biology Workshop Proceedings (pp. 101–114).Google Scholar
  16. Castro, J. J., Santiago, J. A., & Santana-Ortega, A. T. (2002). A general theory on fish aggregation to floating objects: an alternative to the meeting point hypothesis. Reviews in Fish Biology and Fisheries, 11(3), 255–277.Google Scholar
  17. Christin, S., Hervet, E., & Lecomte, N. (2019). Applications for deep learning in ecology. Methods in Ecology and Evolution.  https://doi.org/10.1111/2041-210X.13256.Google Scholar
  18. Chopin, T., Cooper, J. A., Reid, G., Cross, S., & Moore, C. (2012). Open‐water integrated multi‐trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Reviews in Aquaculture, 4(4), 209–220.Google Scholar
  19. Clynick, B. G., McKindsey, C. W., & Archambault, P. (2008). Distribution and productivity of fish and macroinvertebrates in mussel aquaculture sites in the Magdalen islands (Québec, Canada). Aquaculture, 283(1-4), 203–210.Google Scholar
  20. Costa, B., Taylor, J. C., Kracker, L., Battista, T., & Pittman, S. (2014). Mapping reef fish and the seascape: using acoustics and spatial modeling to guide coastal management. PloS One, 9(1), e85555.Google Scholar
  21. De Vos, L., Götz, A., Winker, H., & Attwood, C. G. (2014). Optimal BRUVs (baited remote underwater video system) survey design for reef fish monitoring in the Stilbaai Marine Protected Area. African Journal of Marine Science, 36(1), 1–10.Google Scholar
  22. Dempster, T., & Kingsford, M. J. (2003). Homing of pelagic fish to fish aggregation devices (FADs): the role of sensory cues. Marine Ecology Progress Series, 258, 213–222.Google Scholar
  23. Dempster, T., Uglem, I., Sanchez-Jerez, P., Fernandez-Jover, D., Bayle-Sempere, J. T., Nilsen, R., & Bjørn, P. (2009). Coastal salmon farms attract large and persistent aggregations of wild fish: an ecosystem effect. Marine Ecology Progress Series, 385, 1–14.Google Scholar
  24. Edgar, G. J., Barrett, N. S., & Morton, A. J. (2004). Biases associated with the use of underwater visual census techniques to quantify the density and size-structure of fish populations. Journal of Experimental Marine Biology and Ecology, 308(2), 269–290.Google Scholar
  25. Emslie, M. J., Cheal, A. J., MacNeil, M. A., Miller, I. R., & Sweatman, H. P. (2018). Reef fish communities are spooked by scuba surveys and may take hours to recover. PeerJ, 6, e4886.Google Scholar
  26. Firth, L. B., Knights, A. M., Bridger, D., Evans, A. J., Mieszkowska, N., Moore, P. J., O’Connor, N. E., Sheehan, E. V., Thompson, R. C., & Hawkins, S. J. (2016). Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. In Oceanography and Marine Biology (pp. 201–278).Google Scholar
  27. Fox, C. J., Benjamins, S., Masden, E. A., & Miller, R. (2018). Challenges and opportunities in monitoring the impacts of tidal-stream energy devices on marine vertebrates. Renewable and Sustainable Energy Reviews, 81, 1926–1938.Google Scholar
  28. Friedlander, A. M., Ballesteros, E., Fay, M., & Sala, E. (2015). Marine communities on oil platforms in Gabon, West Africa: high biodiversity oases in a low biodiversity environment. PLoS ONe.Google Scholar
  29. Froehlich, H. E., Gentry, R. R., Rust, M. B., Grimm, D., & Halpern, B. S. (2017). Public perceptions of aquaculture: evaluating spatiotemporal patterns of sentiment around the world. PloS one, 12(1), e0169281.Google Scholar
  30. Gentry, R. R., Lester, S. E., Kappel, C. V., White, C., Bell, T. W., Stevens, J., & Gaines, S. D. (2017). Offshore aquaculture: Spatial planning principles for sustainable development. Ecology and Evolution, 7(2), 733–743.Google Scholar
  31. Hammar, L., Perry, D., & Gullström, M. (2016). Offshore wind power for marine conservation. Open Journal of Marine Science, 6(1), 66–78.Google Scholar
  32. Harding, J., Harvey, E. S., Saunders, B. J., & Newman, S. J. (2013). A little bait goes a long way: the influence of bait quantity on a temperate fish assemblage sampled using stereo-BRUVs. Journal of Experimental Marine Biology and Ecology, 449, 250–260.Google Scholar
  33. Harvey, E. S., Cappo, M., Butler, J. J., Hall, N., & Kendrick, G. A. (2007). Bait attraction affects the performance of remote underwater video stations in assessment of demersal fish community structure. Marine Ecology Progress Series, 350, 245–254.Google Scholar
  34. Heagney, E. C., Lynch, T. P., Babcock, R. C., & Suthers, I. M. (2007). Pelagic fish assemblages assessed using mid-water baited video: standardising fish counts using bait plume size. Marine Ecology Progress Series, 350, 255.Google Scholar
  35. Heery, E. C., Bishop, M. J., Critchley, L. P., Bugnot, A. B., Airoldi, L., Mayer-Pinto, M., Sheehan, E. V., Coleman, R. A., Loke, L. H., Johnston, E. L., & Komyakova, V. (2017). Identifying the consequences of ocean sprawl for sedimentary habitats. Journal of Experimental Marine Biology and Ecology, 492, 31–48.Google Scholar
  36. Henry, L. A., Mayorga-Adame, C. G., Fox, A. D., Polton, J. A., Ferris, J. S., McLellan, F., McCabe, C., Kutti, T., & Roberts, J. M. (2018). Ocean sprawl facilitates dispersal and connectivity of protected species. Scientific reports, 8(1), 11346.Google Scholar
  37. Inger, R., Attrill, M. J., Bearhop, S., Broderick, A. C., James Grecian, W., Hodgson, D. J., Mills, C., Sheehan, E., Votier, S. C., Witt, M. J., & Godley, B. J. (2009). Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology, 46(6), 1145–1153.Google Scholar
  38. Jensen, A. (2002). Artificial reefs of Europe: perspective and future. ICES Journal of Marine Science, 59, S3–S13.Google Scholar
  39. Kelaher, B. P., Page, A., Dasey, M., Maguire, D., Read, A., Jordan, A., & Coleman, M. A. (2015). Strengthened enforcement enhances marine sanctuary performance. Global Ecology and Conservation, 3, 503–510.Google Scholar
  40. Kingsford, M. J. (1993). Biotic and abiotic structure in the pelagic environment: importance to small fishes. Bulletin of Marine Science, 53(2), 393–415.Google Scholar
  41. Langhamer, O. (2012). Artificial reef effect in relation to offshore renewable energy conversion: state of the art. The Scientific World Journal, Article ID 386713.Google Scholar
  42. Letessier, T. B., Meeuwig, J. J., Gollock, M., Groves, L., Bouchet, P. J., Chapuis, L., Vianna, G. M. S., Kemp, K., & Koldewey, H. J. (2013). Assessing pelagic fish populations: The application of demersal video techniques to the mid-water environment. Methods in Oceanography, 8, 41–55.Google Scholar
  43. Macreadie, P. I., Fowler, A. M., & Booth, D. J. (2011). Rigs-to-reefs: will the deep sea benefit from artificial habitat? Frontiers in Ecology and the Environment, 9(8), 455–461.Google Scholar
  44. Mallet, D., & Pelletier, D. (2014). Underwater video techniques for observing coastal marine biodiversity: a review of sixty years of publications (1952–2012). Fisheries Research, 154, 44–62.Google Scholar
  45. Marsac, F., Fonteneau, A., & Mernard, F. (2000). Drifting FADs used in tuna fisheries: an ecological trap? In J. Y. Le Gall, P. Cayre, & M. Taquet (Eds.), Peche thoniere et dispositifs de concentration de poissons (pp. 536–552). Caraibe-Martinique: IFREMER.Google Scholar
  46. Misund, O. E., & Aglen, A. (1992). Swimming behaviour of fish schools in the North Sea during acoustic surveying and pelagic trawl sampling. ICES Journal of Marine Science, 49, 325–334.Google Scholar
  47. Morrisey, D. J., Cole, R. G., Davey, N. K., Handley, S. J., Bradley, A., Brown, S. N., & Madarasz, A. L. (2006). Abundance and diversity of fish on mussel farms in New Zealand. Aquaculture, 252, 277–288.Google Scholar
  48. Mulazzani, L., & Malorgio, G. (2017). Blue growth and ecosystem services. Marine Policy, 85, 17–24.Google Scholar
  49. Murphy, H. M., & Jenkins, G. P. (2010). Observational methods used in marine spatial monitoring of fishes and associated habitats: a review. Marine and Freshwater Research, 61, 236–252.Google Scholar
  50. Newman, S. J., Williams, D. M. B., & Russ, G. (1997). Patterns of zonation of assemblages of the Lutjanidae, Lethrinidae and Serranidae (Epinephelinae) within and among mid-shelf and outer-shelf reefs in the central Great Barrier Reef. Marine Freshwater Research, 48, 119–128.Google Scholar
  51. Paxton, A. B., Taylor, J. C., Peterson, C. H., Fegley, S. R., & Rosman, J. H. (2019). Consistent spatial patterns in multiple trophic levels occur around artificial habitats. Marine Ecology Progress Series, 611, 189–202.Google Scholar
  52. Pickering, H., & Whitmarsh, D. (1997). Artificial reefs and fisheries exploitation: a review of the ‘attraction versus production’debate, the influence of design and its significance for policy. Fisheries Research, 31(1), 39–59.Google Scholar
  53. Rayner, R., Jolly, C., & Gouldman, C. C. (2019). Ocean Observing and the Blue Economy. Frontiers in Marine Science, 6, 330.Google Scholar
  54. Rees, M. J., Knott, N. A., Fenech, G. V., & Davis, A. R. (2015). Rules of attraction: enticing pelagic fish to mid-water remote underwater video systems (RUVS). Marine Ecology: Progress Series, 529, 213–218.Google Scholar
  55. Santana-Garcon, J., Newman, S. J., & Harvey, E. S. (2014). Development and validation of a mid-water baited stereo-video technique for investigating pelagic fish assemblages. Journal of Experimental Marine Biology and Ecology, 452, 82–90.Google Scholar
  56. Seaman, W. (2007). Artificial habitats and the restoration of degraded marine ecosystems and fisheries. Hydrobiologia, 580, 143–155.Google Scholar
  57. Sheehan, E. V., Stevens, T. F., & Attrill, M. J. (2010). A quantitative, non-destructive methodology for habitat characterisation and benthic monitoring at offshore renewable energy developments. PloS One, 5(12), e14461.Google Scholar
  58. Sheehy, D. J., & Vik, S. F. (2010). The role of constructed reefs in non-indigenous species introductions and range expansions. Ecological Engineering, 36(1), 1–11.Google Scholar
  59. Stenberg, C., Støttrup, J. G., van Deurs, M., Berg, C. W., Dinesen, G. E., Mosegaard, H., Grome, T. M., & Leonhard, S. B. (2015). Long-term effects of an offshore wind farm in the North Sea on fish communities. Marine Ecology Progress Series, 528, 257–265.Google Scholar
  60. Stevens, T. F., Sheehan, E. V., Gall, S. C., Fowell, S. C., & Attrill, M. J. (2014). Monitoring benthic biodiversity restoration in Lyme Bay marine protected area: design, sampling and analysis. Marine Policy, 45, 310–317.Google Scholar
  61. Streich, M. K., Ajemian, M. J., Wetz, J. J., & Stunz, G. W. (2017). A comparison of fish community structure at mesophotic artificial reefs and natural banks in the western Gulf of Mexico. Marine and Coastal Fisheries, 9(1), 170–189.Google Scholar
  62. Tabak, M. A., Norouzzadeh, M. S., Wolfson, D. W., Sweeney, S. J., Vercauteren, K. C., Snow, N. P., Halseth, J. M., Di Salvo, P. A., Lewis, J. S., White, M. D., Teton, B., Beasley, J. C., Schlichting, P. E., Boughton, R. K., Wright, B., Newkirk, E. S., Ivan, J. S., Odell, E. A., Brook, R. K., Lukacs, P. M., Moeller, A. K., Mandeville, E. G., Clune, J., & Miller, R. S. (2019).. Machine learning to classify animal species in camera trap images: applications in ecology. Methods in Ecology and Evolution, 10(4), 585–590.Google Scholar
  63. van den Burg, S. W. K., Aguilar-Manjarrez, J., Jenness, J., & Torrie, M. (2019). Assessment of the geographical potential for co-use of marine space, based on operational boundaries for Blue Growth sectors. Marine Policy, 100, 43–57.Google Scholar
  64. Weinstein, B. G. (2015). MotionMeerkat: integrating motion video detection and ecological monitoring. Methods in Ecology and Evolution, 6, 357–362.Google Scholar
  65. Weinstein, B. G. (2018a). A computer vision for animal ecology. Journal of Animal Ecology, 87(3), 533–545.Google Scholar
  66. Weinstein, B. G. (2018b). Scene-specific convolutional neural networks for video-based biodiversity detection. Methods in Ecology and Evolution, 9(6), 1435–1441.Google Scholar
  67. Willis, T. J., & Babcock, R. C. (2000). A baited underwater video system for the determination of relative density of carnivorous reef fish. Marine and Freshwater Research, 51, 755–763.Google Scholar
  68. Witt, M. J., Sheehan, E. V., Bearhop, S., Broderick, A. C., Conley, D. C., Cotterell, S. P., Crow, E., Grecian, W. J., Halsband, C., Hodgson, D. J., Hosegood, P., Inger, R., Miller, P. I., Sims, D. W., Thompson, R. C., Vanstaen, K., Votier, S. C., Attrill, M. J., & Godley, B. J. (2012). Assessing wave energy effects on biodiversity: the Wave Hub experience. Philosophical Transactions of the Royal Society A, 370, 502–529.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Biological and Marine SciencesUniversity of PlymouthPlymouthUK
  2. 2.Department of Animal ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations