Advertisement

Methodological proposal for the allocation of water quality monitoring stations using strategic decision analysis

  • Micael de Souza FragaEmail author
  • Demetrius David da Silva
  • Abrahão Alexandre Alden Elesbon
  • Hugo Alexandre Soares Guedes
Article
  • 90 Downloads

Abstract

In order to fill a gap in the monitoring of water quality in Brazil, the objective of this study was to propose a methodology to support the allocation of water quality monitoring stations in river basins. To achieve this goal, eight criteria were selected and weighted according to their degree of importance. It was taken into account the opinion of water resources management experts. In addition, a decision support system was designed so that the methodology could be used in the allocation of water quality monitoring stations by researchers and management bodies of water resources, to be fully implemented in geographic information system environment. In order to demonstrate the potential of the proposed methodology, which can be used in places that have or not existing monitoring networks, it has been applied in the Minas Gerais portion of the Doce river basin. Because the area already has a monitoring network with 65 stations in operation under the responsibility of the Minas Gerais Water Management Institute (IGAM), an expansion of the network was suggested and a simulation of a scenario was performed considering that the study area did not have an established network. The results of the analyses consisted of maps of suitability, indicating the locations with greater and lesser suitability for the establishment of the stations. With the application of the methodology, seven new sites were proposed so that the study area had the density recommended by the National Water Agency (ANA), and it was verified that the Caratinga River Water Resources Management Unit (UGRH5 Caratinga) has the most deficiency of stations among the six units evaluated in the Minas Gerais portion of the Doce river basin. In the simulated scenario considering the non-existence of a network, the adequacy map obtained was compared with the existing monitoring network and it was possible to classify the stations according to the purpose for which they were established, such as monitoring environments under anthropic activities or establishing benchmarks for the water bodies. Overall, the proposed methodology proved itself robust, and although the results were specific to one basin, the criteria and decision support system used are fully applicable to other areas of study.

Keywords

Brazilian watershed Monitoring network Multi-criteria decision analysis Water pollution 

Notes

Funding information

The authors would like to thank the Brazilian Agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico - National Council for Scientific and Technological Development) and Fapemig (Fundação de Amparo à Pesquisa do Estado de Minas Gerais - Foundation for Research Support of the State of Minas Gerais) for its financial support during the research development.

References

  1. Aires, U. R. V., Santos, B. S. M., Coelho, C. D., da Silva, D. D., & Calijuri, M. L. (2018). Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy, 70, 63–70.  https://doi.org/10.1016/J.LANDUSEPOL.2017.10.026.CrossRefGoogle Scholar
  2. Ajorlo, M., Abdullah, R. B., Yusoff, M. K., Halim, R. A., Hanif, A. H. M., Willms, W. D., & Ebrahimian, M. (2013). Multivariate statistical techniques for the assessment of seasonal variations in surface water quality of pasture ecosystems. Environmental Monitoring and Assessment, 185(10), 8649–8658.  https://doi.org/10.1007/s10661-013-3201-8.CrossRefGoogle Scholar
  3. Al-Adamat, R., Diabat, A., & Shatnawi, G. (2010). Combining GIS with multicriteria decision making for siting water harvesting ponds in Northern Jordan. Journal of Arid Environments, 74(11), 1471–1477.  https://doi.org/10.1016/J.JARIDENV.2010.07.001.CrossRefGoogle Scholar
  4. Alilou, H., Moghaddam Nia, A., Keshtkar, H., Han, D., & Bray, M. (2018). A cost-effective and efficient framework to determine water quality monitoring network locations. Science of the Total Environment, 624, 283–293.  https://doi.org/10.1016/J.SCITOTENV.2017.12.121.CrossRefGoogle Scholar
  5. Alwaer, H., & Clements-Croome, D. J. (2010). Key performance indicators (KPIs) and priority setting in using the multi-attribute approach for assessing sustainable intelligent buildings. Building and Environment, 45, 799–807.  https://doi.org/10.1016/j.buildenv.2009.08.019.CrossRefGoogle Scholar
  6. ANA. (2012). Panorama da qualidade das águas superficiais do Brasil. Brasília: Agência Nacional de Águas www.ana.gov.br.Google Scholar
  7. ANA. (2013a). Cuidando das Águas - Soluções para melhorar a qualidade dos recursos hídricos (2nd ed.) Brasília.Google Scholar
  8. ANA (2013b) Resolução no 903, de 22 de julho de 2013. Cria a Rede Nacional de Monitoramento da Qualidade das Águas Superficiais - RNQA e estabelece suas diretrizes. http://arquivos.ana.gov.br/resolucoes/2013/903-2013.pdf
  9. ANA. (2016). Encarte Especial sobre a Bacia do Rio Doce - Rompimento da Barragem em Mariana/MG. Cunjuntura dos Recursos Hídricos no Brasil (Vol. 1). : https://doi.org/10.1017/CBO9781107415324.004.
  10. ANA. (2017). Atlas Esgotos: Despoluição de Bacias Hidrográficas. Brasília.Google Scholar
  11. ANA. (2018a). Base hidrográfica Ottocodificada da bacia do rio Doce 1:50.000/1.100.000. Agência Nacional de Águas. http://metadados.ana.gov.br/geonetwork/srv/pt/main.home. Accessed 7 July 2018.
  12. ANA. (2018b). Rede Hidrometeorológica Nacional. Agência Nacional de Águas. http://metadados.ana.gov.br/geonetwork/srv/pt/main.home. Accessed 7 July 2018.
  13. Avila, M., Hora, M., Ávila, C., ALVES, F., Faria, M., & Vieira, M. (2016). Gestão qualitativa dos recursos hídricos. Proposta metodológica para o planejamento de uma rede de estações para monitoramento da qualidade de águas superficiais. Estudo de caso: bacia hidrográfica do Rio Muriaé. Revista Brasileira de Recursos Hídricos, 21(2), 401–415.  https://doi.org/10.21168/rbrh.v21n2.p401-415.CrossRefGoogle Scholar
  14. Barakat, A., El Baghdadi, M., Rais, J., Aghezzaf, B., & Slassi, M. (2016). Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. International Soil and Water Conservation Research, 4(4), 284–292.  https://doi.org/10.1016/J.ISWCR.2016.11.002.CrossRefGoogle Scholar
  15. Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies — A review and future perspectives. Science of the Total Environment, 571, 1312–1329.  https://doi.org/10.1016/J.SCITOTENV.2016.06.235.CrossRefGoogle Scholar
  16. Blachowski, J. (2015). Methodology for assessment of the accessibility of a brown coal deposit with analytical hierarchy process and weighted linear combination. Environmental Earth Sciences, 74(5), 4119–4131.  https://doi.org/10.1007/s12665-015-4461-0.CrossRefGoogle Scholar
  17. Brasil. (1997) Lei no 9.433, de 8 de janeiro de 1997 - Intitiui a Política Nacional de Recursos Hídricos, cria o Sistema Nacional de Gerenciamento de Recursos Hídricos, regulamenta o inciso XIX do art. 21 da Constituição Federal, e altera o art. 1o da Lei no 8.001, de 1. http://www.planalto.gov.br/ccivil_03/LEIS/L9433.htm
  18. Calazans, G. M., Pinto, C. C., da Costa, E. P., Perini, A. F., & Oliveira, S. C. (2018a). Using multivariate techniques as a strategy to guide optimization projects for the surface water quality network monitoring in the Velhas river basin, Brazil. Environmental Monitoring and Assessment, 190(12), 726.  https://doi.org/10.1007/s10661-018-7099-z.CrossRefGoogle Scholar
  19. Calazans, G. M., Pinto, C. C., da Costa, E. P., Perini, A. F., & Oliveira, S. C. (2018b). The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil. Environmental Monitoring and Assessment, 190(8), 491–417.  https://doi.org/10.1007/s10661-018-6873-2.CrossRefGoogle Scholar
  20. Calizaya, A., Meixner, O., Bengtsson, L., & Berndtsson, R. (2010). Multi-criteria decision analysis (MCDA) for integrated water resources management (IWRM) in the Lake Poopo Basin, Bolivia. Water Resources Management, 24(10), 2267–2289.  https://doi.org/10.1007/s11269-009-9551-x.CrossRefGoogle Scholar
  21. CBH-Doce. (2016b). A bacia do rio Doce. http://www.cbhdoce.org.br/institucional/a-bacia
  22. Chang, C.-L., & Lin, Y.-T. (2014). A water quality monitoring network design using fuzzy theory and multiple criteria analysis. Environmental Monitoring and Assessment, 186(10), 6459–6469.  https://doi.org/10.1007/s10661-014-3867-6.CrossRefGoogle Scholar
  23. Chen, Q., Wu, W., Blanckaert, K., Ma, J., & Huang, G. (2012). Optimization of water quality monitoring network in a large river by combining measurements, a numerical model and matter-element analyses. Journal of Environmental Management, 110, 116–124.  https://doi.org/10.1016/J.JENVMAN.2012.05.024.CrossRefGoogle Scholar
  24. Cheng, E. W. L., & Li, H. (2002). Construction partnering process and associated critical success factors: quantitative investigation. Journal of Management in Engineering, 18(4), 194–202.  https://doi.org/10.1061/ASCE0742-597X200218:4194.CrossRefGoogle Scholar
  25. Chilundo, M., Kelderman, P., & O’keeffe, J. H. (2008). Design of a water quality monitoring network for the Limpopo River Basin in Mozambique. Physics and Chemistry of the Earth, Parts A/B/C, 33(8–13), 655–665.  https://doi.org/10.1016/J.PCE.2008.06.055.CrossRefGoogle Scholar
  26. Costa, E. P., Pinto, C. C., Soares, A. L. C., Melo, L. D. V., & Oliveira, S. M. A. C. (2017). Evaluation of violations in water quality standards in the monitoring network of São Francisco River basin, the third largest in Brazil. Environmental Monitoring and Assessment, 189(11), 590.  https://doi.org/10.1007/s10661-017-6266-y.CrossRefGoogle Scholar
  27. Do, H. T., Lo, S.-L., Chiueh, P.-T., & Phan Thi, L. A. (2012). Design of sampling locations for mountainous river monitoring. Environmental Modelling & Software, 27–28, 62–70.  https://doi.org/10.1016/J.ENVSOFT.2011.09.007.CrossRefGoogle Scholar
  28. Dupas, R., Delmas, M., Dorioz, J.-M., Garnier, J., Moatar, F., & Gascuel-Odoux, C. (2015). Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecological Indicators, 48, 396–407.  https://doi.org/10.1016/J.ECOLIND.2014.08.007.CrossRefGoogle Scholar
  29. ECOPLAN-LUME. (2010). Plano Integrado de Recursos Hídricos da Bacia Hidrográfica do Rio Doce - Volume I.Google Scholar
  30. Elesbon, A. A. A., da Silva, D. D., Sediyama, G. C., Montenegro, A. A. A., Ribeiro, C. A. A. S., & Guedes, H. A. S. (2014a). Proposta metodológica para projeto de redes hidrométricas: parte I- espacialização não tendenciosa dos dados hidrológicos. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(9), 980–985.  https://doi.org/10.1590/1807-1929/agriambi.v18n09p980-985.CrossRefGoogle Scholar
  31. Elesbon, A. A. A., da Silva, D. D., Sediyama, G. C., Montenegro, A. A. A., Ribeiro, C. A. A. S., & Guedes, H. A. S. (2014b). Proposta metodológica para projeto de redes hidrométricas: parte II - exclusão, rearranjo e inclusão de estações. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(10), 1023–1030.  https://doi.org/10.1590/1807-1929/agriambi.v18n10p1023-1030.CrossRefGoogle Scholar
  32. Fraga, M. D. S., Uliana, E. M., da Silva, D. D., Campos, F. B., Calijuri, M. L., de Santos, D. M. S., et al. (2018). Climatic zoning for eucalyptus cultivation through strategic decision analysis. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(1), 1.  https://doi.org/10.4136/ambi-agua.2119.CrossRefGoogle Scholar
  33. IBGE. (2010). Censo Demográfico 2010. Instituto Brasileiro de Geografia e Estatística. https://censo2010.ibge.gov.br/resultados.html
  34. IGAM. (2016). Qualidade das águas superficiais de Minas Gerais em 2016. Belo Horizonte.  https://doi.org/10.1017/CBO9781107415324.004.
  35. IGAM. (2017). Relatório de Monitoramento das Águas Superficiais nas Bacias Hidrográficas de Minas Gerais em 2016: Projeto: Sistema de Monitoramento da Qualidade das Águas Superficiais do Estado de Minas Gerais - Águas de Minas. Belo Horizonte.Google Scholar
  36. IGAM. (2018a). Processos de Outorga: Relação de deferidos, indeferidos, cancelados e outros. Instituto Mineiro de Gestão das Águas. http://www.igam.mg.gov.br/outorga. Accessed 7 July 2018.
  37. IGAM. (2018b). Monitoramento de Qualidade das Águas. Instituto Mineiro de Gestão das Águas. http://portalinfohidro.igam.mg.gov.br/monitoramento-de-qualidade-das-aguas. Accessed 7 July 2018.
  38. Kabak, M., Erbaş, M., Çetinkaya, C., & Özceylan, E. (2018). A GIS-based MCDM approach for the evaluation of bike-share stations. Journal of Cleaner Production, 201, 49–60.  https://doi.org/10.1016/J.JCLEPRO.2018.08.033.CrossRefGoogle Scholar
  39. Karamouz, M., Kerachian, R., Akhbari, M., & Hafez, B. (2009a). Design of river water quality monitoring networks: a case study. Environmental Modeling and Assessment, 14(6), 705–714.  https://doi.org/10.1007/s10666-008-9172-4.CrossRefGoogle Scholar
  40. Karamouz, M., Nokhandan, A. K., Kerachian, R., & Maksimovic, Č. (2009b). Design of on-line river water quality monitoring systems using the entropy theory: a case study. Environmental Monitoring and Assessment, 155(1–4), 63–81.  https://doi.org/10.1007/s10661-008-0418-z.CrossRefGoogle Scholar
  41. Karlsson, C. S. J., Kalantari, Z., Mörtberg, U., Olofsson, B., & Lyon, S. W. (2017). Natural hazard susceptibility assessment for road planning using spatial multi-criteria analysis. Environmental Management, 60(5), 823–851.  https://doi.org/10.1007/s00267-017-0912-6.CrossRefGoogle Scholar
  42. Khalil, B., & Ouarda, T. B. M. J. (2009). Statistical approaches used to assess and redesign surface water-quality-monitoring networks. Journal of Environmental Monitoring, 11(11), 1915–1929.  https://doi.org/10.1039/b909521g.CrossRefGoogle Scholar
  43. Kuang, H., Kilgour, D. M., & Hipel, K. W. (2015). Grey-based PROMETHEE II with application to evaluation of source water protection strategies. Information Sciences, 294, 376–389.  https://doi.org/10.1016/J.INS.2014.09.035.CrossRefGoogle Scholar
  44. Lorentz, J. F., Calijuri, M. L., Marques, E. G., & Baptista, A. C. (2016). Multicriteria analysis applied to landslide susceptibility mapping. Natural Hazards, 83(1), 41–52.  https://doi.org/10.1007/s11069-016-2300-6.CrossRefGoogle Scholar
  45. Mahjouri, N., & Kerachian, R. (2011). Revising river water quality monitoring networks using discrete entropy theory: the Jajrood River experience. Environmental Monitoring and Assessment, 175, 291–302.  https://doi.org/10.1007/s10661-010-1512-6.CrossRefGoogle Scholar
  46. Memarzadeh, M., Mahjouri, N., & Kerachian, R. (2013). Evaluating sampling locations in river water quality monitoring networks: application of dynamic factor analysis and discrete entropy theory. Environmental Earth Sciences, 70(6), 2577–2585.  https://doi.org/10.1007/s12665-013-2299-x.CrossRefGoogle Scholar
  47. Mitrović, T., Antanasijević, D., Lazović, S., Perić-Grujić, A., & Ristić, M. (2019). Virtual water quality monitoring at inactive monitoring sites using Monte Carlo optimized artificial neural networks: a case study of Danube River (Serbia). Science of the Total Environment, 654, 1000–1009.  https://doi.org/10.1016/J.SCITOTENV.2018.11.189.CrossRefGoogle Scholar
  48. MMA. (2018). Rodovias federais, estaduais e municipais do Brasil - PNLT 2006. Ministério do Meio Ambiente. http://mapas.mma.gov.br/geonetwork/srv/br/main.home. Accessed 7 July 2018.
  49. Montazar, A., Gheidari, O. N., & Snyder, R. L. (2013). A fuzzy analytical hierarchy methodology for the performance assessment of irrigation projects. Agricultural Water Management, 121, 113–123.  https://doi.org/10.1016/J.AGWAT.2013.01.011.CrossRefGoogle Scholar
  50. Muangthong, S., & Shrestha, S. (2015). Assessment of surface water quality using multivariate statistical techniques: case study of the Nampong River and Songkhram River, Thailand. Environmental Monitoring and Assessment, 187(9), 548.  https://doi.org/10.1007/s10661-015-4774-1.CrossRefGoogle Scholar
  51. Muhsin, N., Ahamed, T., & Noguchi, R. (2018). GIS-based multi-criteria analysis modeling used to locate suitable sites for industries in suburban areas in Bangladesh to ensure the sustainability of agricultural lands. Asia-Pacific Journal of Regional Science, 2(1), 35–64.  https://doi.org/10.1007/s41685-017-0046-0.CrossRefGoogle Scholar
  52. Neji, H. B. B., & Turki, S. Y. (2015). GIS – based multicriteria decision analysis for the delimitation of an agricultural perimeter irrigated with treated wastewater. Agricultural Water Management, 162, 78–86.  https://doi.org/10.1016/J.AGWAT.2015.08.020.CrossRefGoogle Scholar
  53. de Oliveira, D. G., Vargas, R. R., Saad, A. R., Arruda, R. D. O. M., Dalmas, F. B., & Azevedo, F. D. (2018). Land use and its impacts on the water quality of the Cachoeirinha Invernada Watershed, Guarulhos (SP). Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(1), 1.  https://doi.org/10.4136/ambi-agua.2131.CrossRefGoogle Scholar
  54. Oliveira, K. S. S., & da Quaresma, V. S. (2017). Temporal variability in the suspended sediment load and streamflow of the Doce River. Journal of South American Earth Sciences, 78, 101–115.  https://doi.org/10.1016/J.JSAMES.2017.06.009.CrossRefGoogle Scholar
  55. Oliveira, S. C., Amaral, R. C., de Almeida, K. C. B., & Pinto, C. C. (2017). Qualidade das águas superficiais do Médio São Francisco após a implantação dos perímetros irrigados de Gorutuba/Lagoa Grande e Jaíba. Engenharia Sanitaria e Ambiental, 22(4), 711–721.  https://doi.org/10.1590/s1413-41522017136784.CrossRefGoogle Scholar
  56. Ouyang, Y. (2005). Evaluation of river water quality monitoring stations by principal component analysis. Water Research, 39(12), 2621–2635.  https://doi.org/10.1016/J.WATRES.2005.04.024.CrossRefGoogle Scholar
  57. Owusu, S., Mul, M. L., Ghansah, B., Osei-Owusu, P. K., Awotwe-Pratt, V., & Kadyampakeni, D. (2017). Assessing land suitability for aquifer storage and recharge in northern Ghana using remote sensing and GIS multi-criteria decision analysis technique. Modeling Earth Systems and Environment, 3(4), 1383–1393.  https://doi.org/10.1007/s40808-017-0360-6.CrossRefGoogle Scholar
  58. Park, S.-Y., Choi, J. H., Wang, S., & Park, S. S. (2006). Design of a water quality monitoring network in a large river system using the genetic algorithm. Ecological Modelling, 199(3), 289–297.  https://doi.org/10.1016/J.ECOLMODEL.2006.06.002.CrossRefGoogle Scholar
  59. Pérez, C. J., Vega-Rodríguez, M. A., Reder, K., & Flörke, M. (2017). A multi-objective artificial bee colony-based optimization approach to design water quality monitoring networks in river basins. Journal of Cleaner Production, 166, 579–589.  https://doi.org/10.1016/J.JCLEPRO.2017.08.060.CrossRefGoogle Scholar
  60. Pessoa, J. O., Orrico, S. R. M., Lordêlo, M. S., Pessoa, J. O., Orrico, S. R. M., & Lordêlo, M. S. (2018). Qualidade da água de rios em cidades do Estado da Bahia. Engenharia Sanitaria e Ambiental, 23(4), 687–696.  https://doi.org/10.1590/s1413-41522018166513.CrossRefGoogle Scholar
  61. Pourshahabi, S., Talebbeydokhti, N., Rakhshandehroo, G., & Nikoo, M. R. (2018). Spatio-temporal multi-criteria optimization of reservoir water quality monitoring network using value of information and transinformation entropy. Water Resources Management, 32(10), 3489–3504.  https://doi.org/10.1007/s11269-018-2003-8.CrossRefGoogle Scholar
  62. Romano, G., Dal Sasso, P., Trisorio Liuzzi, G., & Gentile, F. (2015). Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy, 48, 131–143.  https://doi.org/10.1016/J.LANDUSEPOL.2015.05.013.CrossRefGoogle Scholar
  63. Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.  https://doi.org/10.1016/0377-2217(90)90057-I.CrossRefGoogle Scholar
  64. Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences. https://www.inderscienceonline.com/doi/abs/10.1504/IJSSci.2008.01759. Accessed 10 January 2019.
  65. Sánchez-Lozano, J. M., Teruel-Solano, J., Soto-Elvira, P. L., & Socorro García-Cascales, M. (2013). Geographical information systems (GIS) and multi-criteria decision making (MCDM) methods for the evaluation of solar farms locations: case study in south-eastern Spain. Renewable and Sustainable Energy Reviews, 24, 544–556.  https://doi.org/10.1016/j.rser.2013.03.019.CrossRefGoogle Scholar
  66. Shahsavari, M. H., & Khamehchi, E. (2018). Optimum selection of sand control method using a combination of MCDM and DOE techniques. Journal of Petroleum Science and Engineering, 171, 229–241.  https://doi.org/10.1016/J.PETROL.2018.07.036.CrossRefGoogle Scholar
  67. Shrestha, S., & Kazama, F. (2007). Assessment of surface water quality using multivariate statistical techniques: a case study of the Fuji river basin, Japan. Environmental Modelling and Software, 22(4), 464–475.  https://doi.org/10.1016/j.envsoft.2006.02.001.CrossRefGoogle Scholar
  68. Simeonov, V., Stratis, J. A., Samara, C., Zachariadis, G., Voutsa, D., Anthemidis, A., et al. (2003). Assessment of the surface water quality in Northern Greece. Water Research, 37(17), 4119–4124.  https://doi.org/10.1016/S0043-1354(03)00398-1.CrossRefGoogle Scholar
  69. de Souza, M. M., & do Gastaldini, M. C. C. (2014). Avaliação da qualidade da água em bacias hidrográficas com diferentes impactos antrópicos. Engenharia Sanitaria e Ambiental, 19(3), 263–274.  https://doi.org/10.1590/S1413-41522014019000001097.CrossRefGoogle Scholar
  70. von Sperling, M. (2014). Introdução à qualidade das águas e ao tratamento de esgotos (4th ed.). Belo Horizonte: UFMG.Google Scholar
  71. Strobl, R. O., & Robillard, P. D. (2008). Network design for water quality monitoring of surface freshwaters: a review. Journal of Environmental Management, 87(4), 639–648.  https://doi.org/10.1016/J.JENVMAN.2007.03.001.CrossRefGoogle Scholar
  72. Tang, Z., Yi, S., Wang, C., & Xiao, Y. (2018). Incorporating probabilistic approach into local multi-criteria decision analysis for flood susceptibility assessment. Stochastic Environmental Research and Risk Assessment, 32(3), 701–714.  https://doi.org/10.1007/s00477-017-1431-y.CrossRefGoogle Scholar
  73. Telci, I. T., Nam, K., Guan, J., & Aral, M. M. (2009). Optimal water quality monitoring network design for river systems. Journal of Environmental Management, 90(10), 2987–2998.  https://doi.org/10.1016/J.JENVMAN.2009.04.011.CrossRefGoogle Scholar
  74. Varekar, V., Karmakar, S., & Jha, R. (2016). Seasonal rationalization of river water quality sampling locations: a comparative study of the modified Sanders and multivariate statistical approaches. Environmental Science and Pollution Research, 23(3), 2308–2328.  https://doi.org/10.1007/s11356-015-5349-y.CrossRefGoogle Scholar
  75. Varekar, V., Karmakar, S., Jha, R., & Ghosh, N. C. (2015). Design of sampling locations for river water quality monitoring considering seasonal variation of point and diffuse pollution loads. Environmental Monitoring and Assessment, 187(6), 376–326.  https://doi.org/10.1007/s10661-015-4583-6.CrossRefGoogle Scholar
  76. Vargas, R. R., Barros, M. D. S., Saad, A. R., Arruda, R. D. O. M., & Azevedo, F. D. (2018). Assessment of the water quality and trophic state of the Ribeirão Guaraçau Watershed, Guarulhos (SP): a comparative analysis between rural and urban areas. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 13(2), 1.  https://doi.org/10.4136/ambi-agua.2170.CrossRefGoogle Scholar
  77. Villacreses, G., Gaona, G., Martínez-Gómez, J., & Jijón, D. J. (2017). Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: the case of continental Ecuador. Renewable Energy, 109, 275–286.  https://doi.org/10.1016/J.RENENE.2017.03.041.CrossRefGoogle Scholar
  78. Walker, D., Jakovljević, D., Savić, D., & Radovanović, M. (2015). Multi-criterion water quality analysis of the Danube River in Serbia: a visualisation approach. Water Research, 79, 158–172.  https://doi.org/10.1016/J.WATRES.2015.03.020.CrossRefGoogle Scholar
  79. Weng, S. Q., Huang, G. H., & Li, Y. P. (2010). An integrated scenario-based multi-criteria decision support system for water resources management and planning – a case study in the Haihe River Basin. Expert Systems with Applications, 37(12), 8242–8254.  https://doi.org/10.1016/J.ESWA.2010.05.061.CrossRefGoogle Scholar
  80. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353 https://www.robertmarks.org/Classes/ENGR5358/Papers/Zadeh1965/ZadehPaper65.pdf. Accessed 12 January 2019.CrossRefGoogle Scholar
  81. Zambon, K. L., de Carneiro, A. A. F. M., da Silva, A. N. R., & Negri, J. C. (2005). Análise de decisão multicritério na localização de usinas termoelétricas utilizando SIG. Pesquisa Operacional, 25(2), 183–199.  https://doi.org/10.1590/S0101-74382005000200002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Universidade Federal de Viçosa, UFVViçosaBrazil
  2. 2.Instituto Federal do Espírito Santo, IFESColatinaBrazil
  3. 3.Universidade Federal de Pelotas, UFPelPelotasBrazil

Personalised recommendations