Advertisement

Study of land cover/land use changes using RS and GIS: a case study of Multan district, Pakistan

  • Sajjad Hussain
  • Muhammad MubeenEmail author
  • Waseem Akram
  • Ashfaq Ahmad
  • Muhammad Habib-ur-RahmanEmail author
  • Abdul Ghaffar
  • Asad Amin
  • Muhammad Awais
  • Hafiz Umar Farid
  • Amjad Farooq
  • Wajid Nasim
Article
  • 55 Downloads

Abstract

Water and land both are limited resources. Current management strategies are facing multiple challenges to meet food security of an increasing population in numerous South Asian countries, including Pakistan. The study of land cover/land use changes (LCLUC) and land surface temperature (LST) is important as both provide critical information for policymaking of natural resources. We spatially examined LCLU and LST changes in district Multan, Pakistan, and its impacts on vegetation cover and water during 1988 to 2017. The LCLUC indicate that rice and sugarcane had less volatility of change in comparison with both cotton and wheat. Producer’s accuracy (PA) is the map accuracy (the producer of map), but user’s accuracy (UA) is the accuracy from the point of view of a map user, not the map maker. Average overall producer’s and user’s accuracy for the region was 85.7% and 87.7% for Rabi (winter) and Kharif (summer) seasons, respectively. The results of this study showed that ‘built-up area’ increased with 7.2% of all the classes during 1988 to 2017 in the Multan district. Anthropogenic activities decreased the vegetation, leading to an increase in LST in study area. Changes on LCLU and LST during the last 30 years have shown that vegetation pattern has changed and temperature has increased in the Multan district.

Keywords

Remote sensing NDVI Climate change Land surface temperature (LST) Crops 

Notes

References

  1. Abbasi, H. U., Maree, M. R., Soomro, A. S., Memon, A. A., & Samo, S. R. (2012). The assessment of decline in forests of Indus Basin using Landsat imagery data: a case study of Larkana, Dadu and Khair-Pur. Sindh University Research Journal-SURJ (Science Series), 44(3).Google Scholar
  2. Aboelnour, M., & Engel, B. A. (2018). Application of remote sensing techniques and geographic information systems to analyze land surface temperature in response to land use/land cover change in Greater Cairo Region, Egypt. Journal of Geographic Information System, 10(1).  https://doi.org/10.4236/jgis.2018.101003.CrossRefGoogle Scholar
  3. Ahmad, F. (2012). A review of remote sensing data change detection: comparison of Faisalabad and Multan districts, Punjab province, Pakistan. Journal of Geography and Regional Planning, 5(9), 236–251.  https://doi.org/10.5897/JGRP11.121.CrossRefGoogle Scholar
  4. Ahmad, F. (2013a). Land degradation pattern using geo-information technology for Kot Addu, Punjab province. Global Journal of Human-Social Science Research: Pakistan.Google Scholar
  5. Ahmad, F. (2013b). Landsat ETM+ and MODIS EVI/NDVI data products for climatic variation and agricultural measurements in Cholistan Desert. Global Journal of Human-Social Science Research, 12(13-B).Google Scholar
  6. Ahmad, F. (2013c). Phenologically-tuned MODIS NDVI-based time series (2000-2012) for monitoring of vegetation and climate change in North-Eastern Punjab, Pakistan. Global Journal of Human-Social Science Research, 12(13-B).Google Scholar
  7. Ahmad, F., Ghazi, S., Ahmad, S. R., & Ahmad, I. (2014). Spectral characteristics and mapping of rice fields using multi-temporal Landsat a nd MODIS data: a case of District Narowal. Global Journal of Human-Social Science Research, 14(6).Google Scholar
  8. Ali, A., Khalid, A., Butt, M. A., Mehmood, R., Mahmood, S. A., Sami, J., & Ali, F. (2018). Towards a remote sensing and GIS-based technique to study population and urban growth: a case study of Multan. Advances in Remote Sensing, 7(03), 245.  https://doi.org/10.4236/ars.2018.73017.CrossRefGoogle Scholar
  9. Campo-Bescós, M. A., Muñoz-Carpena, R., Kaplan, D. A., Southworth, J., Zhu, L., & Waylen, P. R. (2013). Beyond precipitation: physiographic gradients dictate the relative importance of environmental drivers on savanna vegetation. PloS one, 8(8), e72348.CrossRefGoogle Scholar
  10. Chaudhuri, G., & Mishra, N. B. (2016). Spatio-temporal dynamics of land cover and land surface temperature in Ganges-Brahmaputra delta: a comparative analysis between India and Bangladesh. Applied Geography, 68, 68–83.  https://doi.org/10.1016/j.apgeog.2016.01.002.CrossRefGoogle Scholar
  11. Cheema, M. J. M., & Bastiaanssen, W. G. (2010). Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agricultural Water Management, 97(10), 1541–1552.  https://doi.org/10.1016/j.agwat.2010.05.009.CrossRefGoogle Scholar
  12. Cui, L., & Shi, J. (2010). Temporal and spatial response of vegetation NDVI to temperature and precipitation in eastern China. Journal of Geographical Sciences, 20(2), 163–176.CrossRefGoogle Scholar
  13. Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M., Neigh, C., & Reichstein, M. (2013). Trend change detection in NDVI time series: Effects of inter-annual variability and methodology. Remote Sensing, 5(5), 2113–2144.  https://doi.org/10.3390/rs5052113.CrossRefGoogle Scholar
  14. Gajbhiye, S., & Sharma, S. K. (2012). Land use and land cover change detection of Indra River watershed through remote sensing using multi-temporal satellite data. International Journal of Geomatics and Geosciences, 3(1), 89.Google Scholar
  15. Gilani, H., Shrestha, H. L., Murthy, M. S. R., Phuntso, P., Pradhan, S., Bajracharya, B., & Shrestha, B. (2015). Decadal land cover change dynamics in Bhutan. Journal of environmental management, 148, 91–100.  https://doi.org/10.1016/j.jenvman.2014.02.014.CrossRefGoogle Scholar
  16. Hammad, H. M., Abbas, F., Saeed, S., Fahad, S., Cerdà, A., Farhad, W., & Bakhat, H. F. (2018). Offsetting land degradation through nitrogen and water management during maize cultivation under arid conditions. Land degradation & development, 29(5), 1366–1375.  https://doi.org/10.1002/ldr.2933.CrossRefGoogle Scholar
  17. Hussain, S., Mubeen, M., Ahmad, A., Akram, W., Hammad, H. M., Ali, M., Masood, N., Amin, A., Farid, H. U., Sultana, S. R., & Fahad, S. (2019). Using GIS tools to detect the land use/land cover changes during forty years in Lodhran District of Pakistan. Environmental Science and Pollution Research, 1, 1–17.  https://doi.org/10.1007/s11356-019-06072-3.CrossRefGoogle Scholar
  18. Huyen, N. T., Tu, L. H., Liem, N. D., Tram, V. N. Q., Minh, D. N., & Loi, N. K. (2016). Assessing impacts of land use and climate change on soil and water resources in the Srepok watershed, Central Highland of Vietnam. Policy Brief Series, 2016, 1–4.  https://doi.org/10.13140/RG.2.2.28700.08326.CrossRefGoogle Scholar
  19. Ibharim, N. A., Mustapha, M. A., Lihan, T., & Mazlan, A. G. (2015). Mapping mangrove changes in the Matang Mangrove Forest using multi temporal satellite imageries. Ocean & coastal management, 114, 64–76.  https://doi.org/10.1016/j.ocecoaman.2015.06.005.CrossRefGoogle Scholar
  20. Julien, Y., & Sobrino, J. A. (2009). The Yearly Land Cover Dynamics (YLCD) method: an analysis of global vegetation from NDVI and LST parameters. Remote Sensing of Environment, 113(2), 329–334.  https://doi.org/10.1016/j.rse.2008.09.016.CrossRefGoogle Scholar
  21. Kantakumar, L. N., & Neelamsetti, P. (2015). Multi-temporal land use classification using hybrid approach. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 289–295.  https://doi.org/10.1016/j.ejrs.2015.09.003.CrossRefGoogle Scholar
  22. Kharazmi, R., Tavili, A., Rahdari, M. R., Chaban, L., Panidi, E., & Rodrigo-Comino, J. (2018). Monitoring and assessment of seasonal land cover changes using remote sensing: a 30-year (1987–2016) case study of Hamoun wetland, Iran. Environmental monitoring and assessment, 190(6), 356.  https://doi.org/10.1007/s10661-018-6726-z.CrossRefGoogle Scholar
  23. Kumar, P., Husain, A., Singh, R. B., et al. (2018). Impact of land cover change on land surface temperature: a case study of Spiti Valley. Journal of Mountain Science, 15, 1658.  https://doi.org/10.1007/s11629-018-4902-9.CrossRefGoogle Scholar
  24. Liaqut, A., Younes, I., Sadaf, R., & Zafar, H. (2019). Impact of urbanization growth on land surface temperature using remote sensing and GIS: a case study of Gujranwala City, Punjab, Pakistan. International Journal of Economic and Environmental Geology, 9, 44–49.Google Scholar
  25. Lin, C., Wu, C. C., Tsogt, K., Ouyang, Y. C., & Chang, C. I. (2015). Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Information Processing in Agriculture, 2(1), 25–36.  https://doi.org/10.1016/j.inpa.2015.01.003.CrossRefGoogle Scholar
  26. Lu, D., Li, G., Moran, E., & Hetrick, S. (2013). Spatiotemporal analysis of land-use and land-cover change in the Brazilian Amazon. International journal of remote sensing, 34(16), 5953–5978.  https://doi.org/10.1080/01431161.2013.802825.CrossRefGoogle Scholar
  27. Orimoloye, I. R., Mazinyo, S. P., Nel, W., & Kalumba, A. M. (2018). Spatiotemporal monitoring of land surface temperature and estimated radiation using remote sensing: human health implications for East London, South Africa. Environmental earth sciences, 77(3), 77–10.  https://doi.org/10.1007/s12665-018-7252-6.CrossRefGoogle Scholar
  28. Peng, J., Liu, Y., Shen, H., Han, Y., & Pan, Y. (2012a). Vegetation coverage change and associated driving forces in mountain areas of Northwestern Yunnan, China using RS and GIS. Environmental monitoring and assessment, 184(8), 4787–4798.  https://doi.org/10.1007/s10661-011-2302-5.CrossRefGoogle Scholar
  29. Peng, J., Liu, Z., Liu, Y., Wu, J., & Han, Y. (2012b). Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst exponent. Ecological Indicators, 14(1), 28–39.  https://doi.org/10.1016/j.ecolind.2011.08.011.CrossRefGoogle Scholar
  30. Prakasam, C., & Biswas, B. (2009). Land use, land cover change study in Ausgram I&II blocks, Burdwan District, West Bengal using remote sensing and GIS. Indian Journal Landscape Systems and Ecology Studies, 32(2), 8–10.Google Scholar
  31. Qasim, H., Luqman, M., & Khan, S. (2016). A study of forest land cover changes using satellite remote sensing in Thatta District Pakistan. Science International, 28(3).Google Scholar
  32. Rahman, M. T. U., Tabassum, F., Rasheduzzaman, M., Saba, H., Sarkar, L., Ferdous, J., & Islam, A. Z. (2017). Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environmental monitoring and assessment, 189(11), 565.  https://doi.org/10.1007/s10661-017-6272-0.CrossRefGoogle Scholar
  33. Rahman, M. H. U., Ahmad, A., Wang, X., Wajid, A., Nasim, W., Hussain, M., et al. (2018). Multi-model projections of future climate and climate change impacts uncertainty assessment for cotton production in Pakistan. Agricultural and Forest Meteorology, 253, 94–113.CrossRefGoogle Scholar
  34. Rani, M., Kumar, P., Pandey, P. C., Srivastava, P. K., Chaudhary, B. S., Tomar, V., & Mandal, V. P. (2018). Multi-temporal NDVI and surface temperature analysis for urban heat island inbuilt surrounding of sub-humid region: a case study of two geographical regions. Remote Sensing Applications: Society and Environment, 10, 163–172.  https://doi.org/10.1016/j.rsase.2018.03.007.CrossRefGoogle Scholar
  35. Sahana, M., Ahmed, R., & Sajjad, H. (2016). Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarbans Biosphere Reserve, India. Modeling Earth Systems and Environment, 2(2), 81.  https://doi.org/10.1007/s40808-016-0135-5.CrossRefGoogle Scholar
  36. Scanlon, T. M., Albertson, J. D., Caylor, K. K., & Williams, C. A. (2002). Determining land surface fractional cover from NDVI and rainfall time series for a savanna ecosystem. Remote Sensing of Environment, 82(2-3), 376–388.  https://doi.org/10.1016/S0034-4257(02)00054-8.CrossRefGoogle Scholar
  37. Sheela, A. M., Letha, J., Joseph, S., Ramachandran, K. K., & Sanalkumar, S. P. (2011). Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environmental monitoring and assessment, 177(1-4), 575–592.  https://doi.org/10.1007/s10661-010-1658-2.CrossRefGoogle Scholar
  38. Tan, K. C., San Lim, H., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60(7), 1509–1521.  https://doi.org/10.1007/s12665-009-0286-z.CrossRefGoogle Scholar
  39. Udin, W. S., & Zahuri, Z. N. (2017). Land use and land cover detection by different classification systems using remotely sensed data of Kuala Tiga, Tanah Merah Kelantan, Malaysia. Journal Tropology Resource Sustainable Science, 5, 145–151.Google Scholar
  40. Ullah, R., Malik, R. N., & Qadir, A. (2009). Assessment of groundwater contamination in an industrial city, Sialkot, Pakistan. African Journal of Environmental Science and Technology, 3(12).Google Scholar
  41. Usman, M., Liedl, R., Shahid, M. A., & Abbas, A. (2015). Land use/land cover classification and its change detection using multi-temporal MODIS NDVI data. Journal of Geographical sciences, 25(12), 1479–1506.  https://doi.org/10.1007/s11442-015-1247-y.CrossRefGoogle Scholar
  42. Wang, J., Rich, P. M., & Price, K. P. (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains. USA. Int. J. Remote sensing, 24(11), 2345–2364.CrossRefGoogle Scholar
  43. Xie, Y., Sha, Z., & Yu, M. (2008). Remote sensing imagery in vegetation mapping: a review. Journal of plant ecology, 1(1), 9–23.  https://doi.org/10.1093/jpe/rtm005.CrossRefGoogle Scholar
  44. Xu, M., Cao, C., Zhang, H., Guo, J., Nakane, K., He, Q., & Li, X. (2010). Change detection of an earthquake-induced barrier lake based on remote sensing image classification. International Journal of Remote Sensing, 31(13), 3521–3534.  https://doi.org/10.1080/01431161003727689.CrossRefGoogle Scholar
  45. Xu, L., Li, B., Yuan, Y., Gao, X., Zhang, T., & Sun, Q. (2016). Detecting different types of directional land cover changes using MODIS NDVI time series dataset. Remote Sensing, 8(6), 495.  https://doi.org/10.3390/rs8060495.CrossRefGoogle Scholar
  46. Yuan, X. (2015). Longhui Li, Xi Chen and Hao Shi. (2015). Effects of precipitation intensity and temperature on NDVI-based grass change over Northern China during the period from 1982 to 2011. Remote Sens., 7(8), 10164–10183.  https://doi.org/10.3390/rs70810164.CrossRefGoogle Scholar
  47. Zaidi, S. M., Akbari, A., Abu Samah, A., Kong, N. S., Gisen, A., & Isabella, J. (2017). Landsat-5 time series analysis for land use/land cover change detection using NDVI and semi-supervised classification techniques. Polish Journal of Environmental Studies, 26(6).  https://doi.org/10.15244/pjoes/68878.CrossRefGoogle Scholar
  48. Zhan, Z. Z., Liu, H. B., Li, H. M., Wu, W., & Zhong, B. (2012). The relationship between NDVI and terrain factors--a case study of Chongqing. Procedia Environmental Sciences, 12, 765–771.  https://doi.org/10.1016/j.proenv.2012.01.347.CrossRefGoogle Scholar
  49. Zhang, Z., Liu, S., Wei, J., Xu, J., Guo, W., Bao, W., & Jiang, Z. (2016). Mass change of glaciers in Muztag Ata–Kongur Tagh, Eastern Pamir, China from 1971/76 to 2013/14 as derived from remote sensing data. PloS one, 11(1), e0147327.  https://doi.org/10.1371/journal.pone.0147327.CrossRefGoogle Scholar
  50. Zoungrana, B. J., Conrad, C., Thiel, M., Amekudzi, L. K., & Da, E. D. (2018). MODIS NDVI trends and fractional land cover change for improved assessments of vegetation degradation in Burkina Faso, West Africa. Journal of Arid Environments, 153, 66–75.  https://doi.org/10.1016/j.jaridenv.2018.01.005.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Environmental SciencesCOMSATS University Islamabad, Vehari CampusVehariPakistan
  2. 2.U.S.-Pakistan Centre for Advanced Studies in Agriculture and Food SecurityUniversity of AgricultureFaisalabadPakistan
  3. 3.Department of AgronomyMNS-University of AgricultureMultanPakistan
  4. 4.Institute of Crop Science and Resource Conservation (INRES), Crop Science GroupUniversity of BonnBonnGermany
  5. 5.Queensland Alliance for Agriculture and Food Innovation (QAAFI)The University of QueenslandBrisbaneAustralia
  6. 6.Department of Agronomy, University College of Agriculture and Environmental ScienceThe Islamia University of BahawalpurBahawalpurPakistan
  7. 7.Department of Agricultural EngineeringBahauddin Zakariya UniversityMultanPakistan
  8. 8.Department of Agronomy, University College of Agriculture and Environmental SciencesThe Islamia University of Bahawalpur (IUB)BahawalpurPakistan

Personalised recommendations