Estimating potential soil sheet Erosion in a Brazilian semiarid county using USLE, GIS, and remote sensing data

  • Cassiano José Lages Marinho FalcãoEmail author
  • Simone Mirtes de Araújo Duarte
  • Aline da Silva Veloso


The present study aimed to estimate soil erosion in Machados County, Brazil. Rainfall erosivity was calculated using monthly and annual precipitation averages over a 30-year interval, soil erodibility was obtained with a granularity-based equation, and topography and land cover were obtained from DEM data and Sentinel – 2B imagery, respectively. A GIS interface was used to spatialize parameter results and for topography and land cover analysis. The achieved results allowed surmising that the soil loss for the study region risk is low, but significant, with a mean value of 8.11 t/ha year. About a quarter of the total area presented high soil loss, above 20 t/ha year. The biggest influential factors were soil erodibility, with a mean value of 0.028, and land cover, averaging 0.1409. The topographic factor averaged 3.414 and rain erosivity, found to be 2747.22 mm/year, is considered low for the region. Given a lack of conservative practices observed during field work, the soil stewarship P factor was considered 1 for the assessment. The use of orbital images to obtain C factor and the expression applied to calculate soil erodibility provided adequate results. In addition, there is a need for research to monitor and quantify erosion processes in Brazilian semiarid, as well as their erosion tolerance.


Soil erosion USLE GIS DEM Orbital image data 



  1. Banco de Dados Geomorfométricos do Brasil. (2018).INPE – INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS.,
  2. Barrow, C. J. (1991). Land degradation. Cambridge: Cambridge University Press.Google Scholar
  3. Bertoni, J., & Lombardi Neto, F. (2012). Conservação do Solo (8th ed.). São Paulo: Ícone Editora.Google Scholar
  4. Blanco, H., & Lal, R. (2010). Principles of soil conservation and management (pp. 15–33). Heidelberg: Columbus, Springer Science Business Media B.V.CrossRefGoogle Scholar
  5. Bouyoucos, G. J. (1935). The clay ratio as a criterion of the susceptibility of soils to erosion. American Society of Agronomy Journal, 27, 738–741.CrossRefGoogle Scholar
  6. Cantalice, J. R. B., Bezerra, S. A., Figueira, S. B., Inácio, E., Dos, S. B., Silva, M. D. R., & De, O. (2009). Linhas isoerosivas do estado de Pernambuco - 1ª aproximação. Revista Caatinga, 22, 75–80.Google Scholar
  7. Silva da, A. M. (2004). Rainfall erosivity map for Brazil. Catena, 57(3), 251–259.CrossRefGoogle Scholar
  8. Almeida, B. G. De. (2008). Métodos alternativos de determinação de parâmetros físicos do solo e uso de condicionadores químicos no estudo da qualidade do. Piracicaba, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo Tese de Doutorado em Solos e Nutrição de Plantas. Accessed 19 Dec 2018.Google Scholar
  9. Dickinson, A., & Collins, R. (1998). Predicting erosion and sediment yield at the catchment scale, soil erosion at multiple scales (pp. 317–342). Wallingford: CAB International.Google Scholar
  10. Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. International Journal of Remote Sensing, 35, 441–453. Scholar
  11. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA. Serviço Nacional de Levantamento e Conservação de Solos (Rio de Janeiro, RJ). In: Reunião Técnica de Levantamento de Solos, 10., 1979, Rio de Janeiro. Súmula… Rio de Janeiro, 1979. 83 p. (EMBRAPA-SNLCS. Miscelânea, 1).Google Scholar
  12. Freeman, G. T. (1991). Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17, 413–422.CrossRefGoogle Scholar
  13. Grepperud, S. (1945). Soil conservation and government policies in tropical area: does aid worsen the incentives for arresting erosion. Agricultural Economy, 12, 120–140.Google Scholar
  14. Griffin, M. L., Beasley, D. B., Fletcher, J. J., & Foster, G. R. (1988). Estimating soil loss on topographically non-uniform field and farm units. Journal of Soil and Water Conservation, 43(4), 326–331.Google Scholar
  15. Guerra, A. J. T., Fullen, M. A., Jorge, M., & Do, C. O. (2014). Alexandre, S.T. Soil erosion and conservation in Brazil. Anuário do Instituto de Geociências, 37, 81–91.CrossRefGoogle Scholar
  16. Iuss Working Group Wrb. (2015). World reference base for soil resources. In World Soil Resources Reports No 106. Rome: FAO.Google Scholar
  17. Jain, M. K. & Kothyari U. C. (2000). Estimation of soil erosion and sediment yield using GIS, Hydrological Sciences Journal, 45(5), 771–786Google Scholar
  18. Mitasova, H., Mitas Z. (1999). Modeling soil detachment with RUSLE 3D using GIS. University of Illinois at Urbana –Champaign, IL, USAGoogle Scholar
  19. Moore, I. D., & Wilson, J. P. (1992). Length-slope factors for the revised universal soil loss equation: simplified method or estimation. Journal of Soil and Water Conservation, 45, 423–428.Google Scholar
  20. Oliveira, P. T. S., Wendland, E., & Nearing, M. A. (2012). Rainfall erosivity in Brazil: a review. Catena, 100, 139–147. Available in: /2015/08/Rainfall-erosivity-in-Brazil.pdf. Accessed 24 Nov 2018.
  21. Peng, W., Zhou, J., He, Z., & Yang, C.-J. (2011). Integrated use of remote sensing and GIS for predicting soil erosion process. XXI ISPRS Congress, Beijing. 17, 4, 1647–1651.Google Scholar
  22. APAC - Agência Pernambucana de Águas e Clima. (2018). Monitoramento pluviométrico. Accessed 12 Oct 2018.
  23. Pimentel, D., Harvey, C., Resosudarmo, P., Sinclair, K., Kurz, D., Mcnair, M., Crist, S., Sphritz, L., Fitton, L., Saffouri, R., & And Blair, R. (1995). Environmental and economic costs of soil erosion and conservation benefits. Science, 276(531S), 1117–1123.CrossRefGoogle Scholar
  24. Prado, R. B., Fidalgo, E. C. C., Monteiro, J. M. G., Schuler, A. E., Vezzani, F. M., Garcia, J. R., de Oliveira, A. P., Viana, J. H. M., Pedreira, B. d. C. C. G., Mendes, I. d. C., Reatto, A., Parron, L. M., Clemente, E. d. P., Donagemma, G. K., Turetta, A. P. D., & Simões, M. (2016). Current overview and potential applications of the soil ecosystem services approach in Brazil. Pesquisa Agropecuária Brasileira, 51(9), 1021–1038.CrossRefGoogle Scholar
  25. SISolos. SISTEMA de informação de solos brasileiros: consulta pública. Acessed 13 Jan 2015.
  26. SiSolos - Sistema de Informação de Solos Brasileiros. EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária, (2018).
  27. Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., Morcette. J. J. (1997). Second simulation of the satellite signal in the solar spectrum, 6S: an overview.IEEE Transactions on Geoscience and Remote Sensing, 35(3). 675–686CrossRefGoogle Scholar
  28. Vieira, R. D. S. P., Tomasella, J., Alvalá, R. C. S., Sestini, M. F., Affonso, A. G., Rodriguez, D. A., De Oliveira, S. B. P., De Souza, M. S. B., Calil, P. M., De Carvalho, M. A., Valeriano, D. M., Campello, F. C. B., & Santana, M. O. (2015). Identifying areas susceptible to desertification in the Brazilian northeast. Solid Earth, 6(1), 347–360.CrossRefGoogle Scholar
  29. Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses: a guide to conservation planning. Washington, D.C: Department of Agriculture (Agriculture handbook, 537). 58p.Google Scholar
  30. Zhang, Y., Degroote, J., Wolter, C., & Sugumaran, R. (2009). Integration of Modified Universal soil Loss Equation (MUSLE) into a GIS framework to assess soil erosion risk. Land Degradation and Development, 20, 84–91.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Forest Sciences DepartmentUniversidade Federal Rural de PernambucoPaulistaBrazil
  2. 2.Forest Sciences DepartmentUniversidade Federal Rural de PernambucoRecifeBrazil

Personalised recommendations