Advertisement

Flow accumulation based method for the identification of erosion risk points in unpaved roads

  • Rherison Tyrone Silva AlmeidaEmail author
  • Nori Paulo Griebeler
  • Max Well Rabelo de Oliveira
  • Thiago Henrique Arbués Botelho
  • Alisson Neves Harmyans Moreira
Article
  • 34 Downloads

Abstract

The unsuitable construction of unpaved roads has been causing problems related to the formation of erosive processes, sediments in watersheds, bogs, flooding, and holes. Presuming that the areas where flow accumulation intersects unpaved roads represent risk points, our objectives are (1) to develop a qualitative method based on the GIS software management tool (FlowAccRoad) for the identification of the intersection points between flow accumulation and roads and (2) to verify the discrepancy between the points of intersection produced by digital elevation models (DEM) accounting for different spatial resolutions. In the GIS environment, we used the Shuttle Radar Topography Mission (SRTM) and Goiania (GOI) digital elevation models for the modeling of flow accumulation and vectorization of the unpaved roads, both of which are based on the Bandeira Stream Watershed in Goiania, Goiás, Brazil. This highlights that 54 points of intersection between the flow accumulation and unpaved roads present problems related to erosive processes and quagmires, among others. The FlowAccRoad method identified the principal critical points observed in the field, using both the DEM of 30.4 m of spatial resolution (SRTM) and also of 4.8 m of spatial resolution (GOI). From the FlowAccRoad method, we observed that 91% of the risk points identified through the GOI DEM were located less than 20 m from valid points in the field by using GPS. Analyzing the SRTM DEM, only 45% of the critical risk points identified by the method were located less than 20 m from valid points in the field.

Keywords

Geoprocessing Watershed management Environmental sciences Soil conservation 

Notes

Supplementary material

10661_2019_7949_MOESM1_ESM.rar (10 kb)
ESM 1 The model builder for the FlowAccRoad method is available for download as supplementary material. (RAR 9 kb)

References

  1. Alder, S., Prasuhn, V., Liniguer, H., Lerweg, K., Hurni, H., Candinas, A., & Gujer, H. U. (2015). A high-resolution map of direct and indirect connectivity of erosion risk areas to surface waters in Switzerland - a risk assessment tool for planning and policy-making. Land Use Policy, 44, 236–249.CrossRefGoogle Scholar
  2. Baesso, D. P., & Gonçalves, F. L. R. (2003). Estradas rurais: técnicas adequadas de manutenção. Florianópolis: DER.Google Scholar
  3. Cao, L., Zhang, K., & Liang, Y. (2014). Factors affecting rill erosion of unpaved loess roads in China. Earth Surface Processes and Landforms, 39(13), 1812–1821.CrossRefGoogle Scholar
  4. CNT – Confederação Nacional do Transporte. (2017). Pesquisa CNT de rodovias 2017: relatório gerencial. Brasília: CNT, SEST, SENAT.Google Scholar
  5. Cunha, M. C., Thomaz, E. L., & Vestena, L. R. (2013). Erosion control measures of rural roads in the Rio das Pedras basin, Guarapuava, Paraná (Brazil). Sociedade & Natureza, 25(1), 107–118.CrossRefGoogle Scholar
  6. DNIT - Departamento Nacional de Infra-Estrutura de Transportes. (2005). Manual de Conservação Rodoviária. Rio de Janeiro: DNIT.Google Scholar
  7. DNIT - Departamento Nacional de Infra-Estrutura de Transportes. (2007). Terminologias rodoviárias usualmente utilizadas, versão 1.1. Brasília: Diretoria de Planejamento e Pesquisa Coordenação Geral de Planejamento e Programação de Investimentos.Google Scholar
  8. Donald, A. M., & Macdonald, L. H. (1998). Modelling road surface sediment production using a vector geographic information system. Earth Surface Processes and Landforms, 23, 95–107.CrossRefGoogle Scholar
  9. Enriquez, A. G., Silva, D. P., Pruski, F. F., Griebeler, N. P., & Cecon, P. R. (2015). Erodibilidade e tensão crítica de cisalhamento no canal de drenagem de estrada rural não pavimentada. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(2), 160–165.CrossRefGoogle Scholar
  10. Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., & Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45, RG 2004.CrossRefGoogle Scholar
  11. Fu, B., Newhan, L. T. H., & Ramos-Scharrón, C. E. (2010). A review of surface erosion and sediment delivery models for unsealed roads. Environmental Modelling & Software, 25(1), 1–14.CrossRefGoogle Scholar
  12. Griebeler, N. P., Pruski, F. F., Silva, J. M. A., Ramos, M. M., & Silva, D. D. (2005). Modelo para a determinação do espaçamento entre desaguadouros em estradas não pavimentadas. Revista Brasileira de Ciência do Solo, 29(3), 397–405.CrossRefGoogle Scholar
  13. Griebeler, N. P., Pruski, F. F., & Silva, J. M. A. (2009). Controle de Erosão em Estradas Não Pavimentadas. In F. F. Pruski (Ed.), Conservação de Solo e Água: práticas mecânicas para o controle da erosão hídrica (pp. 166–215). Viçosa: Editora UFV.Google Scholar
  14. GOOGLE, INC. (2017). Google Satellite Images. Avaliable in QuickMapServices QGIS Plugin. Accessed October 2017.Google Scholar
  15. Jaafari, A., Najafi, A., Rezaeian, J., & Sattarian, A. (2015). Modeling erosion and sediment delivery from unpaved roads in the north mountainous forest of Iran. International Journal on Geomathematics, 6(2), 343–356.CrossRefGoogle Scholar
  16. Jackson, S. L. (2015). Dusty roads and disconnections: Perceptions of dust from unpaved mining roads in Mongolia’s South Gobi province. Geoforum, 66, 94–105.CrossRefGoogle Scholar
  17. Jenson, S. K., & Dominque, J. O. (1988). Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and Remote Sensing, 54, 1593–1600.Google Scholar
  18. Jones, J. A., Swanson, F. J., Wemple, B. C., & Snyder, K. U. (2000). Effects of roads on hydrology, geomorphology, and disturbance patches in stream networks. Conservation Biology, 14(1), 76–85.CrossRefGoogle Scholar
  19. Junior, P. F., & Thomaz, E. L. (2018). Land-use changes and the increase in the number road-stream crossings in a rural basin south of Brazil. Revista Brasileira de Geomorfologia, 19, 739–755.Google Scholar
  20. Lotfalian, M., Babadi, T. Y., & Akbari, H. (2019). Impacts of soil stabilization treatments on reducing soil loss and runoff in cut-slope of forest roads in Hyrcanian forests. Catena, 172, 158–162.CrossRefGoogle Scholar
  21. MICROSOFT. (2017). Bing Satellite aerial imagery. Avaliable in QuickMapServices QGIS Plugin. Accessed October 2017.Google Scholar
  22. O’Callaghan, J. F., & Mark, D. M. (1984). The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing, 28, 323–344.CrossRefGoogle Scholar
  23. Oliveira, L. C., Bertol, I., Barbosa, F. T., Campos, M. L., & Junior, J. M. (2015). Perdas de solo, água e nutrientes por erosão hídrica em uma estrada florestal na serra catarinense. Ciência Florestal, 25(3), 655–665.CrossRefGoogle Scholar
  24. Ramos-Scharrón, C. E. (2018). Land disturbance effects of roads in runoff and sediment production on dry-tropical settings. Geoderma, 310, 107–119.CrossRefGoogle Scholar
  25. Ramos-Scharrón, C. E., & Lafevor, M. C. (2016). The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the Northeastern Caribbean. Journal of Hydrology, 533, 168–179.CrossRefGoogle Scholar
  26. Ramos-Scharrón, C. E., & MacDonald, L. H. (2007a). Measurement and prediction of natural and anthropogenic sediment sources, St. John, U.S. Virgin Islands. Catena, 71, 250–266.CrossRefGoogle Scholar
  27. Ramos-Scharrón, C. E., & Macdonald, L. H. (2007b). Development and application of a GIS-based sediment budget model. Journal of Environmental Management, 84, 157–172.CrossRefGoogle Scholar
  28. Samiksha, S. S., Raman, R. S., Nirmalkar, J., Kumar, S., & Sirvaiya, R. (2017). PM10 and PM2.5 chemical source profiles with optical attenuation and health risk indicators of paved and unpaved road dust in Bhopal, India. Environmental Pollution, 222, 477–485.CrossRefGoogle Scholar
  29. Santos, A. R., Pastore, E. L., Augusto Junior, F. F., & Cunha, M. A. (1985). Estradas vicinais de terra: manual técnico para conservação e recuperação. Sao Paulo: Instituto de Pesquisas Tecnológicas.Google Scholar
  30. Sosa-Pérez, G., & Macdonald, L. H. (2017a). Effects of closed roads, traffic, and road decommissioning on infiltration and sediment production: a comparative study using rainfall simulations. Catena, 159, 93–105.CrossRefGoogle Scholar
  31. Sosa-Pérez, G., & Macdonald, L. H. (2017b). Reductions in road sediment production and road-stream connectivity from two decommissioning treatments. Forest Ecology and Management, 398, 116–129.CrossRefGoogle Scholar
  32. Tarimo, M., Wondimu, P., Odeck, J., Lohne, J., & Laedre, O. (2017). Sustainable roads in Serengeti National Park: gravel roads construction and maintenance. Procedia Computer Science, 121, 329–336.CrossRefGoogle Scholar
  33. Thomaz, E. L., & Peretto, G. T. (2016). Hydrogeomorphic connectivity on roads crossing in rural headwaters and its effect on stream dynamics. Science of the Total Environment, 550(15), 547–555.CrossRefGoogle Scholar
  34. Tiecher, T., Ramon, R., Laceby, J. P., Evrard, O., & Minella, J. P. G. (2019). Potential of phosphorus fractions to trace sediment sources in a rural catchment of Southern Brazil: comparison with the conventional approach based on elemental geochemistry. Geoderma, 337, 1067–1076.CrossRefGoogle Scholar
  35. Vuillez, C., Tonini, M., Sudmeier-Rieux, K., Devkotac, S., Derron, M. H., & Jaboyedoff, M. (2018). Land use changes, landslides and roads in the Phewa Watershed, Western Nepal from 1979 to 2016. Applied Geography, 94, 30–40.CrossRefGoogle Scholar
  36. Zhang, J. X., Chang, K., & Wu, J. Q. (2008). Effects of DEM resolution and source on soil erosion modelling: a case study using the WEPP model. International Journal of Geographical Information Science, 22(8), 925–942.CrossRefGoogle Scholar
  37. Zhang, Z., Liu, S., Dong, S., Fu, W., & Cui, B. (2009). Spatio temporal analysis of different levels of road expansion on soil erosion distribution: a case study of Fengquing county, Southwest China. Frontiers of Earth Science in China, 3, 389–396.CrossRefGoogle Scholar
  38. Zoccal, J. C. (2007). Soluções cadernos de estudos em conservação do solo e água: Adequação de erosões: causas, consequências e controle da erosão rural. Presidente Prudente: Companhia de Desenvolvimento Agrícola de São Paulo.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rherison Tyrone Silva Almeida
    • 1
    Email author
  • Nori Paulo Griebeler
    • 2
  • Max Well Rabelo de Oliveira
    • 3
  • Thiago Henrique Arbués Botelho
    • 2
  • Alisson Neves Harmyans Moreira
    • 2
  1. 1.Laboratório de Processamento de Imagens e Geoprocessamento (Lapig/IESA)Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Engenharia de Biossistemas, Escola de AgronomiaUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Instituto Federal de GoiásGoiâniaBrazil

Personalised recommendations