Long-term impact of agricultural practices on the diversity of small mammal communities: a case study based on owl pellets

  • Alessandro BalestrieriEmail author
  • Andrea Gazzola
  • Giulio Formenton
  • Luca Canova


Small mammals have been seldom used as indicators of biodiversity responses to environmental changes, probably because their long-term population trend in a given area is not easy to monitor. To assess the impact of agricultural intensification in a protected area of northern Italy, we compared the composition of its small mammal communities, as assessed in 1994–1995 and 2015–2016 by the analysis of owl pellets (N = 265 and 302, respectively), which provides an effective and affordable method for assessing changes in the diversity and structure of small mammal assemblages over time. We recorded a sharp reduction in the frequency of occurrence of shrews (Sorex spp. and Crocidura spp.), which were replaced by generalist/anthropophilic rats (Rattus norvegicus) and house mice (Mus domesticus). Overall richness and diversity of the community varied only slightly, while trophic level and functional diversity indices clearly reflected the decline of the predator-level fraction of the community. We could reliably exclude both broad-scale land use- and climate changes as drivers of variation in the composition of small mammal communities and ascribe the decline of insectivores to changes in agricultural practices, namely the increase in cover of maize fields and spread of both herbicides and insecticides. Our results are consistent with the general opinion that crop specialization and increasing chemical inputs reduce the diversity and abundance of invertebrate prey, with bottom-up effects on higher trophic levels.


Agricultural intensification Species richness Community ecology Owl diet Pellet analysis 



We thank Luigi Remonti and Marco Fiandra for their help with field work.

Compliance with ethical standards

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Conflict of interest

The author declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abramsky, Z. (1978). Small mammal community ecology. Oecologia, 34, 113–123.CrossRefGoogle Scholar
  2. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture Ecosystems & Environment, 74, 19–31.CrossRefGoogle Scholar
  3. Balestrieri, A., Remonti, L., Ruiz-González, A., Vergara, M., Capelli, E., Gómez-Moliner, B. J., & Prigioni, C. (2011). Food habits of genetically identified pine marten (Martes martes) expanding in agricultural lowlands (NW Italy). Acta Theriologica, 56, 199–207.CrossRefGoogle Scholar
  4. Balestrieri, A., Remonti, L., Morotti, L., Saino, N., Prigioni, C., & Guidali, F. (2015). Multilevel habitat preferences of Apodemus sylvaticus and Myodes glareolus in an intensively cultivated agricultural landscape. Ethology Ecology and Evolution, 29, 38–53.CrossRefGoogle Scholar
  5. Barn Owl Trust. (2012). Barn owl conservation handbook. Exeter: Pelagic Publishing.Google Scholar
  6. Bates, F. S., & Harris, S. (2009). Does hedgerows management on organic farms benefit small mammal populations? Agriculture Ecosystems & Environment, 129, 124–130.CrossRefGoogle Scholar
  7. Battersby, J. (Ed.). (2005). UK mammals: species status and population trends. first report by the tracking mammals partnership. Peterborough: JNCC/Tracking Mammals Partnership.Google Scholar
  8. Benton, T. G., Bryant, D. M., Cole, L., & Crick, H. Q. P. (2002). Linking agricultural practice to insect and bird populations: a historical study over three decades. Journal of Applied Ecology, 39, 673–687.CrossRefGoogle Scholar
  9. Blus, L. J. (1978). Short-tailed shrews: toxicity and residue relationship of DDT, dieldrin and endrin. Archives of Environmental Contamination and Toxicology, 7, 83–98.CrossRefGoogle Scholar
  10. Bond, G., Burnside, N. G., Metcalfe, D. J., Scott, D. M., & Blamire, J. (2005). The effects of land-use and landscape structure on barn owl (Tyto alba) breeding success in Southern England, U.K. Landscape Ecology, 20, 555–566.CrossRefGoogle Scholar
  11. Bosè, M., & Guidali, F. (2001). Seasonal and geographic differences in the diet of the barn owl in an agro-system in northern Italy. Journal of Raptor Research, 35, 240–246.Google Scholar
  12. Bottoni, P., Grenni, P., Lucentini, L., & Barra Caracciolo, A. (2013). Terbuthylazine and other triazines in Italian water resources. Microchemical Journal, 107, 136–142.CrossRefGoogle Scholar
  13. Bourguet, D., & Guillemaud, T. (2016). The hidden and external costs of pesticide use. Sustainable Agriculture Reviews, 19, 35–120.CrossRefGoogle Scholar
  14. Braham, H. W., & Neal, C. M. (1974). The effects of DDT on the energetics of the short-tailed shrew, Blarina brevicauda. Bulletin of Environmental Contamination and Toxicology, 12, 32–37.CrossRefGoogle Scholar
  15. Buffin, D., & Jewell, T. (2001). Health and environmental impacts of glyphosate: the implications of increased use of glyphosate in association with genetically modified crops. Friends of the Earth, 1–37.Google Scholar
  16. Burel, F., Baudry, J., Butet, A., Clergeau, P., Delettre, Y., Le Coeur, D., Dubs, F., Morvan, N., Paillat, G., Petit, S., Thenail, C., Brunel, E., & Lefeuvre, J. C. (1998). Comparative biodiversity along a gradient of agricultural landscapes. Acta Oecologica, 19, 47–60.CrossRefGoogle Scholar
  17. Canova, L. (1992). Distribution and habitat preference of small mammals in a biotope of the north Italian plain. Bollettino di Zoologia, 59, 417–421.CrossRefGoogle Scholar
  18. Caraveli, H. (2000). A comparative analysis on intensification and extensification in Mediterranean agriculture: dilemmas for LFAs policy. Journal of Rural Studies, 16, 231–242.CrossRefGoogle Scholar
  19. Casati, D., & Frisio, D. (2009). Impatto rilevante sulla filiera, con perdite fino a 100 milioni. Terra e Vita, 40, 12–16.Google Scholar
  20. Chaline, J., Baudvin, H., Jammot, D., & Saint Girons, M. C. (1974). Les proies des rapaces. Paris: Doin Ed.Google Scholar
  21. Chamberlain, D. E., Fuller, R. J., Bunce, R. G. H., Duckworth, J. C., & Shrubb, M. (2000). Changes in the abundance of farmland birds in relation to the timing of agricultural intensification in England and Wales. Journal of Applied Ecology, 37, 771–788.CrossRefGoogle Scholar
  22. Churchfield, S., Hollier, J., & Brown, V. K. (1995). Population dynamics and survivorship patterns in the common shrew Sorex araneus in southern England. Acta Theriologica, 40, 53–68.CrossRefGoogle Scholar
  23. Contoli, L. (1976). Predazione di Tyto alba su micromammiferi e valutazione sullo stato ambientale. In Atti IV Simposio Nazionale Conservazione della Natura (pp. 229–243). Bari: Istituto di Zoologia Università di Bari.Google Scholar
  24. Contoli, L. (1980). Borre di Strigiformi e ricerca termologica in Italia. Natura e Montagna, 3, 73–94.Google Scholar
  25. Contoli, L., Testi, A., Tittarelli, L., & Benedetti, P. (2002). Are animal trophic systems as reliable expression of climate as are plant communities? Preliminary evidence from the Tyrrhenian belt in Italy. Ecologia Mediterranea, 28, 75–92.Google Scholar
  26. Croft, B. A., & Brown, A. W. A. (1975). Responses of arthropod natural enemies to insecticides. Annual Review of Entomology, 20, 285–335.CrossRefGoogle Scholar
  27. de Bello, F., Leps, J., & Sebastia, M. T. (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29, 801–810.CrossRefGoogle Scholar
  28. Debastiani, V. J., & Pillar, V. D. (2012). SYNCSA — R tool for analysis of metacommunities based on functional traits and phylogeny of the community components. Bioinformatics, 28, 2067–2068.CrossRefGoogle Scholar
  29. Delattre, P., Giraudoux, P., Baudry, J., Musard, P., Toussaint, M., Truchetet, D., Stahl, P., Lazarine-Poule, M., Artois, M., Damange, J. P., & Quéré, J. P. (1992). Land use patterns and types of common vole (Microtus arvalis) population kinetics. Agriculture Ecosystems & Environment, 39, 153–169.CrossRefGoogle Scholar
  30. Dell’Omo, G., Bryenton, R., & Shore, R. F. (1997). Effects of exposure to an organophosphate pesticide on behavior and acetylcholinesterase activity in the common shrew, Sorex araneus. Environmental Toxicology and Chemistry, 16, 272–276.CrossRefGoogle Scholar
  31. Donald, P. F., Green, R. E., & Heath, M. F. (2001). Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of the Royal Society of London B, 268, 25–29.CrossRefGoogle Scholar
  32. Dreiss, L. M., Burgio, K. R., Cisneros, L. M., Klingbeil, B. T., Patterson, B. D., Presley, S. J., & Willig, M. R. (2015). Taxonomic, functional, and phylogenetic dimensions of rodent biodiversity along an extensive tropical elevational gradient. Ecography, 38, 001–013.CrossRefGoogle Scholar
  33. Emmerson, M., Morales, M. B., Oñate, J. J., Batáry, P., Berendse, F., Liira, J., Aavik, T., Guerrero, I., Bommarco, R., Eggers, S., Part, T., Tscharntke, T., Weisser, W., Clement, L., & Bengtsson, J. (2016). How agricultural intensification affects biodiversity and ecosystem services. In A. J. Dumbrell, R. L. Kordas, & G. Woodward (Eds.), Large-Scale Ecology: Model Systems to Global Perspectives. Advances in Ecology Research (Vol. 55, pp. 43–97).CrossRefGoogle Scholar
  34. Estel, S., Kuemmerle, T., Levers, C., Baumann, M., & Hostert, P. (2016). Mapping cropland-use intensity across Europe using MODIS NDVI time series. Environmental Research Letters, 11, 024015.CrossRefGoogle Scholar
  35. Freemark, K. E., & Boutin, C. (1995). Impacts of agricultural herbicide use on terrestrial wildlife in temperate landscapes: a review with special reference to North America. Agriculture Ecosystems & Environment, 52, 67–91.CrossRefGoogle Scholar
  36. Fukasawa, K., Miyashita, T., Hashimoto, T., Tatara, M., & Abe, S. (2013). Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting. Proceedings of the Royal Society B, 280, 20132075.CrossRefGoogle Scholar
  37. Gentili, S., Sigura, M., & Bonesi, L. (2014). Decreased small mammals species diversity and increased population abundance along a gradient of agricultural intensification. Hystrix, Italian Journal of Mammalogy, 25, 39–44.Google Scholar
  38. Gherardi, M., Lorito, S., Vianello, G., & Vittori Antisari, L. (2009). Qualitative and quantitative evaluation of soil depletion due to urbanization in the areas near the Po River. EQA–Environmental quality, 2, 29–38.Google Scholar
  39. Giorgi, F., & Lionello, P. (2008). Climate change projections for the Mediterranean region. Global and Planetary Change, 63, 90–104.CrossRefGoogle Scholar
  40. Gonthier, D. J., Ennis, K. K., Farinas, S., Hsieh, H.-Y., Iverson, A. L., Batary, P., Rudolphi, J., Tscharntke, T., Cardinale, B. J., & Perfecto, I. (2014). Biodiversity conservation in agriculture requires a multi-scale approach. Proceedings of the Royal Society of London B, 281, 20141358.CrossRefGoogle Scholar
  41. Groppali, R. (1987). Scelta delle prede da parte di barbagianni ed allocco, presenti nella medesima località del Parco dell’Adda Sud. Pianura, 1, 83–88.Google Scholar
  42. Hazell, P., & Wood, S. (2008). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B, 363, 495–515.CrossRefGoogle Scholar
  43. Heisler, L. M., Somers, C. M., & Poulin, R. G. (2016). Owl pellets: a more effective alternative to conventional trapping for broad-scale studies of small mammal communities. Methods in Ecology and Evolution, 7, 96–103.CrossRefGoogle Scholar
  44. Hendriks, A. J., Ma, W.-C., Brouns, J. J., de Ruiter-Dijkman, E. M., & Gast, R. (1997). Modelling and monitoring organochlorine and heavy metal accumulation in soils, earthworms and shrews in Rhine-delta floodplains. Archives of Environmental Contamination and Toxicology, 29, 115–127.CrossRefGoogle Scholar
  45. Heroldová, M., Bryja, J., Zejda, J., & Tkadlec, E. (2007). Structure and diversity of small mammal communities in agriculture landscape. Agriculture Ecosystems & Environment, 120, 206–210.CrossRefGoogle Scholar
  46. Herzog, F., Steiner, B., Bailey, D., Baudry, J., Billeter, R., Bukácek, R., De Blust, G., De Cock, R., Dirksen, J., Dormann, C.F., De Filippi, R., Frossard, E., Liira, J., Schmidtg, T., Stockli, R., Thenail, C., van Wingerden, W., Bugter, R. (2006). Assessing the intensity of temperate European agriculture at the landscape scale. European Journal of Agronomy, 24, 165–81. CrossRefGoogle Scholar
  47. Hodara, K., & Poggio, S. L. (2016). Frogs taste nice when there are few mice: do dietary shifts in barn owls result from rapid farming intensification? Agriculture Ecosystems & Environment, 230, 42–46.CrossRefGoogle Scholar
  48. ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale. (2016). Rapporto Nazionale Pesticidi nelle Acque, dati 2013–2014. Roma: ISPRA.Google Scholar
  49. Jaksic, F. M., & Marti, C. D. (1984). Comparative food habits of Bubo owls in Mediterranean-type ecosystems. Condor, 86, 288–296.CrossRefGoogle Scholar
  50. Jeliazkov, A., Mimet, A., Chargé, R., Jiguet, F., Devictor, V., & Chiron, F. (2016). Impacts of agricultural intensification on bird communities: new insights from a multi-level and multi-facet approach of biodiversity. Agriculture Ecosystems & Environment, 216, 9–22.CrossRefGoogle Scholar
  51. Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375.CrossRefGoogle Scholar
  52. Kaufman, D. W., Kaufman, G. A., & Finck, E. J. (1983). Effects of fire on rodents in tallgrass prairie of the flint hills region of eastern Kansas. Prairie Naturalist, 15, 49–56.Google Scholar
  53. Kellogg, R. L., Nehring, R., Grube, A., Goss, D. W., & Plotkin, S. (2000). Environmental indicators of pesticide leaching and runoff from farm fields. Agricultural productivity: data, methods, and measures conference, March 9–10, 2000, Washington DC.Google Scholar
  54. Kincaid, W. B., Cameron, G. N., & Carnes, B. A. (1983). Patterns of habitat utilization in sympatric rodents on the Texas coastal prairie. Ecology, 64, 1471–1480.CrossRefGoogle Scholar
  55. Korpimäki, E., Brown, P. R., Jacob, J., & Pech, R. P. (2004). The puzzles of population cycles and outbreaks of small mammals solved? BioScience, 54, 1071–1079.CrossRefGoogle Scholar
  56. Krebs, J. R., Wilson, J. D., Bradbury, R. B., & Siriwardena, G. M. (1999). The second silent spring? Nature, 400, 611–612.CrossRefGoogle Scholar
  57. Kromp, B. (1999). Carabid beetles in sustainable agriculture: a review on pest control efficacy, cultivation impacts and enhancement. Agriculture Ecosystems & Environment, 74, 187–228.CrossRefGoogle Scholar
  58. Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos, 76, 5–13.CrossRefGoogle Scholar
  59. Laiolo, P. (2005). Spatial and seasonal patterns of bird communities in Italian Agroecosystems. Conservation Biology, 19, 1547–1556.CrossRefGoogle Scholar
  60. Lepš, J., de Bello, F., Lavorel, S., & Berman, S. (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78, 481–501.Google Scholar
  61. Liess, M., & Von Der Ohe, P. C. (2005). Analyzing effects of pesticides on invertebrate communities in streams. Environmental Toxicology and Chemistry, 24, 954.CrossRefGoogle Scholar
  62. Love, R. A., Webon, C., Glue, D. E., & Harris, S. (2000). Changes in the food of British barn owls (Tyto alba) between 1974 and 1997. Mammal Review, 30, 107–129.CrossRefGoogle Scholar
  63. Luff, M. L., & Woiwood, I. P. (1995). Insects as indicators of land-use change: a European perspective, focusing on moths and ground beetles. In R. Harrington & N. E. Stork (Eds.), Insects in a changing environment (pp. 399–422). London: Academic.Google Scholar
  64. MacArthur, R. (1965). Patterns of species diversity. Biological Reviews, 40, 510–533.CrossRefGoogle Scholar
  65. Magurran, A. E. (1988). Ecological diversity and its measurements. Princeton: Princeton University Press.CrossRefGoogle Scholar
  66. Maiorano, L., Falcucci, A., Zimmermann, N. E., Psomas, A., Pottier, J., Baisero, D., Rondinini, C., Guisan, A., & Boitani, L. (2011). The future of terrestrial mammals in the Mediterranean basin under climate change. Philosophical Transactions of the Royal Society B, 366, 2681–2692.CrossRefGoogle Scholar
  67. Marin-Morales, M. A., de Campos Ventura-Camargo, B., & Hoshina, M. M. (2014). Toxicity of herbicides: Impact on aquatic and soil biota and human health. In A. J. Price & J. A. Kelton (Eds.), Herbicides - current research and case studies in use (pp. 399–444). Rijeka: InTech.Google Scholar
  68. Matson, P. A. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.CrossRefGoogle Scholar
  69. Meek, W. R., Burman, P. J., Sparks, T. H., Nowakowski, M., & Burman, N. J. (2012). The use of barn owl Tyto alba pellets to assess population change in small mammals. Bird Study, 59, 166–174.CrossRefGoogle Scholar
  70. Michel, N., Burel, F., Legendre, P., & Butet, A. (2007). Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landscape Ecology, 22, 1241–1253.CrossRefGoogle Scholar
  71. Millán de la Peña, N., Butet, A., Delettre, Y., Paillat, G., Morant, P., Le Du, L., & Burel, F. (2003). Response of the small mammal community to changes in western French agricultural landscapes. Landscape Ecology, 18, 265–278.CrossRefGoogle Scholar
  72. Newton, I., Wyllie, I., & Freestone, P. (1990). Rodenticides in British barn owls. Environmental Pollution, 68, 101–117.CrossRefGoogle Scholar
  73. Niedertscheider, M., & Erb, K. (2014). Land system change in Italy from 1884 to 2007: analysing the north–south divergence on the basis of an integrated indicator framework. Land Use Policy, 39, 366–375.CrossRefGoogle Scholar
  74. Ouin, A., Paillat, G., Butet, A., & Burel, F. (2000). Spatial dynamics of wood mouse (Apodemus sylvaticus) in an agricultural landscape under intensive use in the Mont Saint Michel Bay (France). Agriculture Ecosystems & Environment, 78, 159–165.CrossRefGoogle Scholar
  75. Pocock, M. J. O., & Jennings, N. (2008). Testing biotic indicator taxa: the sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. Journal of Applied Ecology, 45, 151–160.CrossRefGoogle Scholar
  76. Prigioni, C., & Balestrieri, A. (2016). Valutazione dell’impatto sulla fauna dei lavori di manutenzione dell’oleodotto “Ferrera-Bertonico” nel SIC IT2080015 “San Massimo”. Unpublished manuscript, Università degli Studi di Pavia.Google Scholar
  77. Prigioni, C., Cantini, M., & Zilio, A. (2001). Atlante dei Mammiferi della Lombardia. Pavia: Regione Lombardia e Università degli Studi di Pavia.Google Scholar
  78. Rao, C. R. (1982). Diversity and dissimilarity coefficients—a unified approach. Theoretical Population Biology, 21, 24–43.CrossRefGoogle Scholar
  79. Rattner, B. A., & Mastrota, F. N. (2018). Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions. In N. W. van den Brink, J. E. Elliott, R. F. Shore, & B. A. Rattner (Eds.), Anticoagulant rodenticides and wildlife (pp. 1–9). Cham: Springer International Publishing.Google Scholar
  80. Reidsma, P., Tekelenburg, T., van den Berg, M., & Alkemade, R. (2006). Impacts of land-use change on biodiversity: an assessment of agricultural biodiversity in the European Union. Agriculture Ecosystems & Environment, 114, 86–102.CrossRefGoogle Scholar
  81. Rete Rurale Nazionale, LIPU. (2015). Lombardia – Farmland Bird Index, Woodland Bird Index e andamenti di popolazione delle specie 2000–2014. Milan: Regione Lombardia.Google Scholar
  82. Rice, W. R. (1989). Analysing tables of statistical tests. Evolution., 43, 223–225.CrossRefGoogle Scholar
  83. Robinson, R. A., & Sutherland, W. J. (2002). Post-war changes in arable farming and biodiversity in Great Britain. Journal of Applied Ecology, 39, 157–176.CrossRefGoogle Scholar
  84. Ruiz-Martinez, I., Marraccini, E., Debolini, M., & Bonari, E. (2015). Indicators of agricultural intensity and intensification: a review of the literature. Italian Journal of Agronomy, 10, 74–84.CrossRefGoogle Scholar
  85. Santoro, S., Sanchez-Suarez, C., Rouco, C., Palomo, L. J., Fernández, M. C., Kufner, M. B., & Moreno, S. (2017). Long-term data from a small mammal community reveal loss of diversity and potential effects of local climate change. Current Zoology, 63, 515–523.Google Scholar
  86. Stehn, R. A., Stone, J. A., & Richmond, M. E. (1976). Feeding response of small mammal scavengers to pesticide-killed arthropod prey. American Midland Naturalist, 95, 253.CrossRefGoogle Scholar
  87. Szpunar, G., Aloise, G., Mazzotti, S., Nieder, L., & Cristaldi, M. (2008). Effects of global climate change on terrestrial small mammal communities in Italy. Fresenius Environmental Bulletin, 17, 1526–1533.Google Scholar
  88. Terry, R. C. (2010). On raptors and rodents: testing the ecological fidelity and spatiotemporal resolution of cave death assemblages. Paleobiology, 36, 137–160.CrossRefGoogle Scholar
  89. Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.CrossRefGoogle Scholar
  90. Tornisielo, L. V., Grossi Botelho, R., de Toledo Alves, P. A., Bonfleur, E. J., & Monteiro, S. H. (2014). Pesticide tank mixes: an environmental point of view. In A. J. Price & J. A. Kelton (Eds.), Herbicides - Current Research and Case Studies in Use (pp. 473–488). Rijeka: InTech.Google Scholar
  91. Torre, I., Gracia-Quintas, L., Arrizabalaga, A., Baucells, J., & Díaz, M. (2015). Are recent changes in the terrestrial small mammal communities related to land use change? A test using pellet analyses. Ecological Research, 30, 813–819.CrossRefGoogle Scholar
  92. Vandewalle, M., de Bello, F., Berg, M. P., Bolger, T., Dolédec, S., Dubs, F., Feld, C. K., Harrington, R., Harrison, P. A., Lavorel, S., Martins da Silva, P., Moretti, M., Niemelä, J., Santos, P., Sattler, T., Sousa, J. P., Sykes, M. T., Vanbergen, A. J., & Woodcock, B. A. (2010). Functional traits as indicators of biodiversity response to land use changes across ecosystems and organisms. Biodiversity and Conservation, 19, 2921–2947.CrossRefGoogle Scholar
  93. Vigorita, V., & Cucè, L. (Eds.). (2008). La fauna selvatica in Lombardia. Rapporto 2008 su distribuzione, abbondanza e stato di conservazione di uccelli e mammiferi. Milan: Regione Lombardia.Google Scholar
  94. Wickramasinghe, L. P., Harris, S., Jones, G., & Vaughan Jennings, N. (2004). Abundance and species richness of nocturnal insects on organic and conventional farms: effects of agricultural intensification on bat foraging. Conservation Biology, 18, 1283–1292.CrossRefGoogle Scholar
  95. Yalden, D. W. (1977). The identification of remains in owl pellets. Reading: Mammal Society.Google Scholar
  96. Yasmin, S., & D’Souza, D. (2010). Effects of pesticides on the growth and reproduction of earthworm - a review. Journal of Applied Environmental Soil Science. Scholar
  97. Zimmerman, G., Stapp, P., & Van Horne, B. (1996). Seasonal variation in the diet of great horned owls (Bubo virginianus) on shortgrass prairie. American Midland Naturalist, 136, 149–156.CrossRefGoogle Scholar
  98. Zub, K., Jędrzejewska, B., Jędrzejewski, W., & Bartoń, K. A. (2012). Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriologica, 57, 205–216.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesUniversity of PaviaPaviaItaly
  2. 2.Adda Sud Regional ParkLodiItaly
  3. 3.Department of ChemistryUniversity of PaviaPaviaItaly

Personalised recommendations