Advertisement

Flood inundation mapping and monitoring using SAR data and its impact on Ramganga River in Ganga basin

  • Ashwani Kumar Agnihotri
  • Anurag Ohri
  • Shishir Gaur
  • Shivam
  • Nilendu Das
  • Sachin MishraEmail author
Article
  • 84 Downloads

Abstract

Remote sensing–based flood inundation mapping and monitoring is very crucial input before, during, and after floods. Ganga–Ramganga doab is one of the prolonged flood-affected area in middle Ganga plain due to seasonal monsoon which leads to rise in water levels of Ganga and Ramganga rivers. The focus of the present study is to map severe flood condition captured through synthetic aperture radar (SAR) data during August–September 2018, and to explain the impact on Ramganga river morphology. SAR data is preferred for flood mapping and real-time monitoring in all weather conditions. In this study, dual-polarized (VV and VH) Sentinel-1 SAR images coupled with hydrological data (river water level) were used to produce flood inundation maps. Thresholding technique has been applied to determine the flood mapping through Sentinel-1 data. VH and VV polarisation methods have been applied for a comparison of their respective accuracies in delineating surface water. Results have been validated against a Sentinel-2 optical image, and both polarisations produced a total accuracy of more than 93%. VV polarisation has high accuracies than VH polarisation as similar results are observed in previous studies as well. The finding reveals that severe bank erosion took place in the Ramganga channel which significantly affected the channel morphology, mainly the massive mobilisation of channel sediments. The results show that the average channel width increased from 46 to 336 m. The proposed approach demonstrates that the microwave remote sensing data along with GIS can be used efficiently for flood inundation mapping, monitoring, and analysing its effect on channel morphology. Therefore, the results of this study will help to take the initiative to reduce the flood hazard impact in the doab area and increase the flexibility in the process of flood management.

Keywords

SAR data Flood monitoring Ganga and Ramganga Doab GIS 

Notes

Acknowledgements

The authors are profoundly grateful to Prof. P.K.Singh, Head, Department of Civil Engineering, Indian Institute of Technology (BHU), for providing necessary facilities in Geoinformatics Engineering Laboratory to complete this study. In addition, the authors also would like to give special thanks to Dr. Prithvish Nag (former Surveyor General of India) for reviewing and adding positive comments on this manuscript.

Funding information

The authors express their gratitude to the University Grants Commission (UGC), New Delhi, India, for financial assistance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agnihotri, A. K., Ohri, A., & Mishra, S. (2018). Channel planform dynamics of lower Ramganga River, Ganga basin, GIS and remote sensing analyses. Geocarto International, 0, 1–20.  https://doi.org/10.1080/10106049.2018.1552323.CrossRefGoogle Scholar
  2. Amitrano, D., Di Martino, G., Iodice, A., et al. (2018). Unsupervised rapid flood mapping using Sentinel-1 GRD SAR images. IEEE Transactions on Geoscience and Remote Sensing, 56, 3290–3299.  https://doi.org/10.1109/TGRS.2018.2797536.CrossRefGoogle Scholar
  3. Anusha N, Bharathi B (2019) Flood detection and flood mapping using multi-temporal synthetic aperture radar and optical data. Egyptian Journal of Remote Sensing and Space Science 1–13. doi:  https://doi.org/10.1016/j.ejrs.2019.01.001
  4. Ascott, M. J., Lapworth, D. J., Gooddy, D. C., et al. (2016). Impacts of extreme flooding on riverbank filtration water quality. Science of the Total Environment, 554–555, 89–101.  https://doi.org/10.1016/j.scitotenv.2016.02.169.CrossRefGoogle Scholar
  5. Balasch, J. C., Pino, D., Ruiz-Bellet, J. L., Tuset, J., Barriendos, M., Castelltort, X., & Peña, J. C. (2019). The extreme floods in the Ebro River basin since 1600 CE. Science of the Total Environment, 646, 645–660.  https://doi.org/10.1016/j.scitotenv.2018.07.325.CrossRefGoogle Scholar
  6. Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148.CrossRefGoogle Scholar
  7. Bauer, M., Jachymova, B., David, V., et al. (2019). Risk to residents, infrastructure, and water bodies from flash floods and sediment transport. Environmental Monitoring and Assessment, 191, 1–19.  https://doi.org/10.1007/s10661-019-7216-7.CrossRefGoogle Scholar
  8. Bhatt, C. M., & Rao, G. S. (2016). Ganga floods of 2010 in Uttar Pradesh, north India: a perspective analysis using satellite remote sensing data. Geomatics, Natural Hazards and Risk, 7, 747–763.  https://doi.org/10.1080/19475705.2014.949877.CrossRefGoogle Scholar
  9. Bioresita, F., Puissant, A., Stumpf, A., & Malet, J. P. (2018). A method for automatic and rapid mapping of water surfaces from Sentinel-1 imagery. Remote Sensing, 10, 217.  https://doi.org/10.3390/rs10020217.CrossRefGoogle Scholar
  10. Borah, S. B., Sivasankar, T., Ramya, M. N. S., & Raju, P. L. N. (2018). Flood inundation mapping and monitoring in Kaziranga National Park, Assam using Sentinel-1 SAR data. Environmental Monitoring and Assessment, 190, 1–11.  https://doi.org/10.1007/s10661-018-6893-y.CrossRefGoogle Scholar
  11. Burn, T., & Milan, D. J. (2012). Geomorphology Geomorphic impact and system recovery following an extreme fl ood in an upland A B C. Geomorphology, 138, 319–328.  https://doi.org/10.1016/j.geomorph.2011.09.017.CrossRefGoogle Scholar
  12. Capolongo, D., Refice, A., Bocchiola, D., D'Addabbo, A., Vouvalidis, K., Soncini, A., Zingaro, M., Bovenga, F., & Stamatopoulos, L. (2019). Coupling multitemporal remote sensing with geomorphology and hydrological modeling for post flood recovery in the Strymonas dammed river basin (Greece). Science of the Total Environment, 651, 1958–1968.  https://doi.org/10.1016/j.scitotenv.2018.10.114.CrossRefGoogle Scholar
  13. Cian, F., Marconcini, M., & Ceccato, P. (2018). Normalized Difference Flood Index for rapid flood mapping: taking advantage of EO big data. Remote Sensing of Environment, 209, 712–730.  https://doi.org/10.1016/j.rse.2018.03.006.CrossRefGoogle Scholar
  14. Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi-temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11, 152–168.  https://doi.org/10.1111/jfr3.12303.CrossRefGoogle Scholar
  15. Debnath, J., Das, P. N., Ahmed, I., & Bhowmik, M. (2017). Channel migration and its impact on land use/land cover using RS and GIS: A study on Khowai River of Tripura, North-East India. Egyptian Journal of Remote Sensing and Space Science, 20, 197–210.  https://doi.org/10.1016/j.ejrs.2017.01.009.CrossRefGoogle Scholar
  16. Deo, R. C., Byun, H. R., Kim, G. B., & Adamowski, J. F. (2018). A real-time hourly water index for flood risk monitoring: Pilot studies in Brisbane, Australia, and Dobong Observatory, South Korea. Environmental Monitoring and Assessment, 190, 1–27.  https://doi.org/10.1007/s10661-018-6806-0.CrossRefGoogle Scholar
  17. Dong, X., Grimm, N. B., Ogle, K., & Franklin, J. (2016). Temporal variability in hydrology modi fi es the in fl uence of geomorphology on wetland distribution along a desert stream. Journal of Ecology, 104(1), 18–30.  https://doi.org/10.1111/1365-2745.12450.CrossRefGoogle Scholar
  18. Du, Y., Zhang, Y., Ling, F., et al. (2016). Water bodies’ mapping from Sentinel-2 imagery with Modified Normalized Difference Water Index at 10-m spatial resolution produced by sharpening the swir band. Remote Sensing, 8, 354.  https://doi.org/10.3390/rs8040354.CrossRefGoogle Scholar
  19. Fuller, I. C. (2008). Geomorphic impacts of a 100-year flood : Kiwitea Stream (98th ed.pp. 84–95). New Zealand: Manawatu catchment.  https://doi.org/10.1016/j.geomorph.2007.02.026.CrossRefGoogle Scholar
  20. Gao, W., Shen, Q., Zhou, Y., & Li, X. (2018). Analysis of flood inundation in ungauged basins based on multi-source remote sensing data. Environmental Monitoring and Assessment, 190, 129.  https://doi.org/10.1007/s10661-018-6499-4.CrossRefGoogle Scholar
  21. Hauer, C., & Habersack, H. (2009). Morphodynamics of a 1000‐year flood in the Kamp River, Austria, and impacts on floodplain morphology. Earth Surface Processes and Landforms, 34(5), 654–682.Google Scholar
  22. Hazarika, N., Barman, D., Das, A. K., et al. (2018). Assessing and mapping flood hazard, vulnerability and risk in the Upper Brahmaputra River valley using stakeholders’ knowledge and multicriteria evaluation (MCE). Journal of Flood Risk Management, 11, S700–S716.  https://doi.org/10.1111/jfr3.12237.CrossRefGoogle Scholar
  23. Hooke, J. M. (2016). Geomorphological impacts of an extreme flood in SE Spain. Geomorphology, 263, 19–38.  https://doi.org/10.1016/j.geomorph.2016.03.021.CrossRefGoogle Scholar
  24. Huang, C., Chen, Y., & Wu, J. (2014). Mapping spatio-temporal flood inundation dynamics at large riverbasin scale using time-series flow data and MODIS imagery. International Journal of Applied Earth Observation and Geoinformation, 26, 350–362.  https://doi.org/10.1016/j.jag.2013.09.002.CrossRefGoogle Scholar
  25. Ibáñez, C., Caiola, N., Rovira, A., & Real, M. (2012). Monitoring the effects of floods on submerged macrophytes in a large river. Science of the Total Environment, 440, 132–139.  https://doi.org/10.1016/j.scitotenv.2012.07.073.CrossRefGoogle Scholar
  26. IDUP (2018) Department, Irrigation & Water Resources (Goverment of Uttar Pradesh). http://idup.gov.in/pages/en/topmenu/dept.-activities/civil/floods/en-flood-bulletin. Accessed 1 Oct 2018
  27. Kale, V. S., Ely, L. L., Enzel, Y., & Baker, V. R. (1994). Geomorphic and hydrologic aspects of monsoon floods on the Narmada and Tapi Rivers in central India. Geomorphology, 10, 157–168.  https://doi.org/10.1016/0169-555X(94)90014-0.CrossRefGoogle Scholar
  28. Khan, M. Y. A., Daityari, S., & Chakrapani, G. J. (2016). Factors responsible for temporal and spatial variations in water and sediment discharge in Ramganga River, Ganga Basin, India. Environment and Earth Science, 75, 283–218.  https://doi.org/10.1007/s12665-015-5148-2.CrossRefGoogle Scholar
  29. Kumar, R., Singh, R., Gautam, H., & Pandey, M. K. (2018). Flood hazard assessment of August 20, 2016 floods in Satna District, Madhya Pradesh, India. Remote Sensing Applications: Society and Environment, 11, 104–118.  https://doi.org/10.1016/j.rsase.2018.06.001.CrossRefGoogle Scholar
  30. Li, W., Du, Z., Ling, F., et al. (2013). A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sensing, 5, 5530–5549.  https://doi.org/10.3390/rs5115530.CrossRefGoogle Scholar
  31. Lim, J., & Lee, K. S. (2017). Investigating flood susceptible areas in inaccessible regions using remote sensing and geographic information systems. Environmental Monitoring and Assessment, 189, 1–13.  https://doi.org/10.1007/s10661-017-5811-z.CrossRefGoogle Scholar
  32. Lucía, A., Schwientek, M., Eberle, J., & Zarfl, C. (2018). Planform changes and large wood dynamics in two torrents during a severe flash flood in Braunsbach, Germany 2016. Science of the Total Environment, 640–641, 315–326.  https://doi.org/10.1016/j.scitotenv.2018.05.186.CrossRefGoogle Scholar
  33. Maurya, S. P., & Agnihotri, A. K. (2017). Corrigendum to “Evaluation of course change detection of Ramganga river using remote sensing and GIS, India” [Weather and Climate Extremes 13 (2016) 68–72]. Weather and Climate Extremes, 17, 59.  https://doi.org/10.1016/j.wace.2017.06.002.CrossRefGoogle Scholar
  34. Nakmuenwai, P., Yamazaki, F., & Liu, W. (2017). Automated extraction of inundated areas from multi-temporal dual-polarization radarsat-2 images of the 2011 central Thailand flood. Remote Sensing, 9, 78.  https://doi.org/10.3390/rs9010078.CrossRefGoogle Scholar
  35. NDMA (2008) Management of floodsGoogle Scholar
  36. Nelson, N. C., Erwin, S. O., & Schmidt, J. C. (2013). Spatial and temporal patterns in channel change on the Snake River downstream from Jackson Lake dam, Wyoming. Geomorphology, 200, 132–142.  https://doi.org/10.1016/j.geomorph.2013.03.019.CrossRefGoogle Scholar
  37. Nikolakopoulos KG, Vaiopoulos DA, Skianis GA (2007) Use of multitemporal remote sensing data for mapping the Alfios River network changes from 1977 to 2000. Geocarto Int 22:251–271.  https://doi.org/10.1080/10106040701204727.CrossRefGoogle Scholar
  38. Ovando, A., Martinez, J. M., Tomasella, J., et al. (2018). Multi-temporal flood mapping and satellite altimetry used to evaluate the flood dynamics of the Bolivian Amazon wetlands. International Journal of Applied Earth Observation and Geoinformation, 69, 27–40.  https://doi.org/10.1016/j.jag.2018.02.013.CrossRefGoogle Scholar
  39. Rahman, M. R., & Thakur, P. K. (2017a). Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara District of Orissa State of India. Egyptian Journal of Remote Sensing and Space Science, 21, 37–41.  https://doi.org/10.1016/j.ejrs.2017.10.002.CrossRefGoogle Scholar
  40. Rahman, R., & Thakur, P. K. (2017b). Detecting , mapping and analysing of flood water propagation using synthetic aperture radar ( SAR ) satellite data and GIS : a case study from the Kendrapara District of Orissa State of India [2018]. The Egyptian Journal of Remote Sensing and Space Sciences Detectin.  https://doi.org/10.1016/j.ejrs.2017.10.002.CrossRefGoogle Scholar
  41. Rahman, M. R., & Thakur, P. K. (2018). Detecting, mapping and analysing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara District of Orissa State of India. Egyptian Journal of Remote Sensing and Space Science, 21, S37–S41.  https://doi.org/10.1016/j.ejrs.2017.10.002.CrossRefGoogle Scholar
  42. Reisenbüchler, M., Bui, M. D., Skublics, D., & Rutschmann, P. (2019). An integrated approach for investigating the correlation between floods and river morphology: a case study of the Saalach River, Germany. Science of the Total Environment, 647, 814–826.  https://doi.org/10.1016/j.scitotenv.2018.08.018.CrossRefGoogle Scholar
  43. Roux, C., Alber, A., Bertrand, M., et al. (2015). ‘FluvialCorridor’: a new ArcGIS toolbox package for multiscale riverscape exploration. Geomorphology, 242, 29–37.  https://doi.org/10.1016/j.geomorph.2014.04.018.CrossRefGoogle Scholar
  44. Roy, N. G., & Sinha, R. (2005). Alluvial geomorphology and confluence dynamics in the Gangetic plains, Farrukhabad-Kannauj area, Uttar Pradesh, India. Current Science, 88, 2000–2006.Google Scholar
  45. Ryu, J., Won, J., & Min, K. (2002). Waterline extraction from Landsat TM data in a tidal flat: a case study in Gomso Bay, Korea. Remote Sensing of Environment, 83, 442–456.  https://doi.org/10.1016/S0034-4257(02)00059-7.CrossRefGoogle Scholar
  46. Sanjuán, Y., Gómez-villar, A., Nadal-Romero, E., et al. (2016). Linking land cover changes in the sub-alpine and montane belts. Land Degradation and Development, 189, 179–189.CrossRefGoogle Scholar
  47. Schumann, G. J. P., & Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, 83–84, 84–95.  https://doi.org/10.1016/j.pce.2015.05.002.CrossRefGoogle Scholar
  48. Sghaier, M. O., Hammami, I., Foucher, S., & Lepage, R. (2018). Flood extent mapping from time-series SAR images based on texture analysis and data fusion. Remote Sensing, 10, 237.  https://doi.org/10.3390/rs10020237.CrossRefGoogle Scholar
  49. Shen, X., Wang, D., Mao, K., et al. (2019). Inundation extent mapping by synthetic aperture radar: a review. Remote Sensing, 11, 879.  https://doi.org/10.3390/rs11070879.CrossRefGoogle Scholar
  50. Shivaprasad Sharma, S. V., Parth Sarathi, R., Chakravarthi, V., et al. (2017). Extraction of detailed level flood hazard zones using multi-temporal historical satellite data-sets–a case study of Kopili River Basin, Assam, India. Geomatics, Natural Hazards and Risk, 8, 792–802.  https://doi.org/10.1080/19475705.2016.1265014.CrossRefGoogle Scholar
  51. Sivasankar, T., Das, R., Borah, S.B., Raju, P.L.N. (2019) Proceedings of international conference on remote sensing for disaster management. 851–863.  https://doi.org/10.1007/978-3-319-77276-9 Google Scholar
  52. Thirumurugan, P., & Krishnaveni, M. (2019). Flood hazard mapping using geospatial techniques and satellite images—a case study of coastal district of Tamil Nadu. Environmental Monitoring and Assessment, 191, 1–17.  https://doi.org/10.1007/s10661-019-7327-1.CrossRefGoogle Scholar
  53. Thompson, C., & Croke, J. (2013). Geomorphology Geomorphic effects, flood power, and channel competence of a catastrophic flood in confined and unconfined reaches of the upper Lockyer valley, southeast Queensland, Australia. Geomorphology, 197, 156–169.  https://doi.org/10.1016/j.geomorph.2013.05.006.CrossRefGoogle Scholar
  54. Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018a). SAR-based detection of flooded vegetation–a review of characteristics and approaches. International Journal of Remote Sensing, 39, 2255–2293.  https://doi.org/10.1080/01431161.2017.1420938.CrossRefGoogle Scholar
  55. Tsyganskaya, V., Martinis, S., Marzahn, P., & Ludwig, R. (2018b). Detection of temporary flooded vegetation using Sentinel-1 time series data. Remote Sensing, 10, 1286.  https://doi.org/10.3390/rs10081286.CrossRefGoogle Scholar
  56. Twele, A., Cao, W., Plank, S., & Martinis, S. (2016). Sentinel-1-based flood mapping: a fully automated processing chain. International Journal of Remote Sensing, 37, 2990–3004.  https://doi.org/10.1080/01431161.2016.1192304.CrossRefGoogle Scholar
  57. UN-SPIDER Knowledge Portal. UN-SPIDER Knowledge Portal. http://www.un-spider.org/advisory-support/recommended-practices/recommended-practice-flood-mapping. Accessed 10 Dec 2018
  58. Vishnu, C.L., Sajinkumar, K.S., Oommen, T., et al. (2019) Satellite-based assessment of the August 2018 flood in parts of Kerala, India. In: Geomatics, Nat. Hazards Risk. https://www.tandfonline.com/doi/full/10.1080/19475705.2018.1543212 CrossRefGoogle Scholar
  59. Youdeowei, P. O. (1997). Bank collapse and erosion at the upper reaches of the Ekole creek. Bulletin of Engineering Geology and the Environment, 55(1), 167–172.  https://doi.org/10.1007/BF02635419.CrossRefGoogle Scholar
  60. Yousefi, S., Moradi, H. R., Telvari, A., & Vafakhah, M. (2015). Monitoring of fluvial systems using RS and GIS (Case study: Talar River, Iran). Journal of Selçuk University Natatural and Applied Science, 4, 60–72.Google Scholar
  61. Yousefi, S., Pourghasemi, H. R., Hooke, J., et al. (2016). Changes in morphometric meander parameters identified on the Karoon River, Iran, using remote sensing data. Geomorphology, 271, 55–64.  https://doi.org/10.1016/j.geomorph.2016.07.034.CrossRefGoogle Scholar
  62. Yousefi, S., Keesstra, S., Pourghasemi, H. R., Surian, N., & Mirzaee, S. (2017a). Interplay between river dynamics and international borders: the Hirmand River between Iran and Afghanistan. Science of the Total Environment, 586, 492–501.  https://doi.org/10.1016/j.scitotenv.2017.01.208.CrossRefGoogle Scholar
  63. Yousefi, S., Moradi, H. R., Keesstra, S., et al. (2017b). Effects of urbanization on river morphology of the Talar River, Mazandarn Province, Iran. Geocarto International, 6049, 1–17.  https://doi.org/10.1080/10106049.2017.1386722.CrossRefGoogle Scholar
  64. Yousefi, S., Mirzaee, S., Keesstra, S., et al. (2018). Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology, 304, 30–39.  https://doi.org/10.1016/j.geomorph.2017.12.034.CrossRefGoogle Scholar
  65. Zhang, Z., Shu, A., Zhang, K., Liu, H., Wang, J., & Dai, J. (2019). Quantification of river bank erosion by RTK GPS monitoring: case studies along the Ningxia-Inner Mongolia reaches of the Yellow River, China. Environmental Monitoring and Assessment, 191, 1–13.  https://doi.org/10.1007/s10661-019-7269-7.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringIIT (BHU)VaranasiIndia
  2. 2.Department of ChemistryIIT (BHU)VaranasiIndia

Personalised recommendations