Extreme rainfall trends of 21 typical urban areas in China during 1998–2015 based on remotely sensed data sets

  • Weiyue Li
  • Min ZhaoEmail author
  • Marco Scaioni
  • Seyed Reza Hosseini
  • Xiang Wang
  • Dongjing Yao
  • Kaihang Zhang
  • Jun Gao
  • Xin Li


With the increase of population, many cities are growing in size at a phenomenal rate. Urbanization changes the urban underlying surface, influences the micro-climate, and sometimes affects the local precipitation process. In this study, we investigated the trends of extreme rainfall in China’s 21 typical urban areas. Based on a series of daily rainfall and “Urban/built-up” dataset from TMPA 3B42 and MCD12Q1 products in China, trends in extreme precipitation, with the threshold defined as 95th (pre95p) and 99th (pre99p) percentiles of annual rain days during 1998–2015, have been assessed in China, and especially in 21 typical urban areas from 1998 to 2015. The tendency curves in extreme rainfall of different years are presented. In this period, more than 66% regions of China covered by TMPA 3B42 have increasing trends in extreme rainfall with pre95p threshold. The 21 typical urban areas showed different trends—in over half of these areas, upward tendencies in extreme rainfall were observed, particularly in Dalian, Beijing, and Chongqing. Seventeen urban areas showed increasing tendencies in pre95p extreme rainfall days, including Shanghai, Nanjing, Hangzhou, and Suzhou in the Yangtze River Delta region. The results also illustrate that southeastern coastal urban areas of China may have experienced decreasing occurrences in extreme rainfall.


Extreme rainfall trends Rainfall threshold Urban areas Satellite-based precipitation Remotely sensed data 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41501458 and 41730642), the Natural Science Foundation of Shanghai (Grant No. 19ZR1437500), the National Key Research and Development Program of China (No. 2016YFC0502706), open fund of Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection (STKF201902), and the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development.


  1. Aalst, M. K. V. (2006). The impacts of climate change on the risk of natural disasters. Disasters, 30(1), 5–18.CrossRefGoogle Scholar
  2. Ackerman, A., Kirkpatrick, M., Stevens, D., & Toon, O. (2004). The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432(7020), 1014–1017.CrossRefGoogle Scholar
  3. Agarwal, M., & Tandon, A. (2010). Modeling of the urban heat island in the form of mesoscale wind and of its effect on air pollution dispersal. Applied Mathematical Modelling, 34(9), 2520–2530.CrossRefGoogle Scholar
  4. Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., Haylock, M., Collins, D., Trewin, B., Rahimzadeh, F., Tagipour, A., Rupa Kumar, K., Revadekar, J., Griffths, G., Vincent, L., Stephenson, D. B., Burn, J., Aguilar, E., Taylor, M., New, M., Zhai, P., Rusticucci, M., & Vazque-Aguirre, J. L. (2012). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research-Atmospheres, 111(D5), 1042–1063.Google Scholar
  5. Allan, R. P., & Soden, B. J. (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321(5895), 1481–1484.CrossRefGoogle Scholar
  6. Barredo, J. I. (2007). Major flood disasters in Europe: 1950–2005. Natural Hazards, 42(1), 125–148.CrossRefGoogle Scholar
  7. Cetin, M. (2015a). Determining the bioclimatic comfort in Kastamonu city. Environmental Monitoring and Assessment, 187(10), 640.CrossRefGoogle Scholar
  8. Cetin, M. (2015b). Using GIS analysis to assess urban green space in terms of accessibility: case study in Kutahya. International Journal of Sustainable Development and World Ecology, 22(5), 420–424.Google Scholar
  9. Cetin, M. (2016). Sustainability of urban coastal area management: a case study on Cide. Journal of Sustainable Forestry, 35(7), 527–541.CrossRefGoogle Scholar
  10. Cetin, M., & Sevik, H. (2016). Evaluating the recreation potential of Ilgaz Mountain National Park in Turkey. Environmental Monitoring and Assessment, 188(1), 52.CrossRefGoogle Scholar
  11. Cetin, M., Adiguzel, F., Kaya, O., & Sahap, A. (2018). Mapping of bioclimatic comfort for potential planning using GIS in Aydin. Environment, Development and Sustainability, 20(1), 361–375.CrossRefGoogle Scholar
  12. Chen, S., Hong, Y., Cao, Q., Kirstetter, P., Gourley, J. J., Qi, Y., Zhang, J., Howard, K., Hu, J., & Wang, J. (2013). Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: are remote-sensing products ready for gauge denial scenario of extreme events? Journal of Hydrology, 506, 4–13.CrossRefGoogle Scholar
  13. Chen, Z., Yin, L., Chen, X., Wei, S., & Zhu, Z. (2016). Research on the characteristics of urban rainstorm pattern in the humid area of Southern China: a case study of Guangzhou city. International Journal of Climatology, 35(14), 4370–4386.CrossRefGoogle Scholar
  14. Chou, C., Chen, C. A., Tan, P. H., & Chen, K. T. (2012). Mechanisms for global warming impacts on precipitation frequency and intensity. Journal of Climate, 25(9), 3291–3306.CrossRefGoogle Scholar
  15. Deng, Y., Jiang, W., He, B., Chen, Z., & Jia, K. (2018). Change in Intensity and frequency of extreme precipitation and its possible teleconnection with large-scale climate index over the China from 1960 to 2015. Journal of Geophysical Research-Atmospheres, 123(4), 2068–2081.CrossRefGoogle Scholar
  16. Domrös, M., & Peng, G. (2012). The climate of China. Berlin: Springer.Google Scholar
  17. Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2016). More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 6(5), 508–514.CrossRefGoogle Scholar
  18. Frich, P., Alexander, L. V., Della-Marta, P. M., Gleason, B., Haylock, M., Klein Tank, A. M. G., & Peterson, T. (2002). Observed coherent changes in climatic extremes during the second half of the twentieth century. Climate Research, 19(3), 193–212.CrossRefGoogle Scholar
  19. Georgescu, M., Morefield, P. E., Bierwagen, B. G., & Weaver, C. P. (2014). Urban adaptation can roll back warming of emerging megapolitan regions. Proceedings of the National Academy of Sciences, 111(8), 2909–2914.CrossRefGoogle Scholar
  20. Han, J. Y., Baik, J. J., & Lee, H. (2014). Urban impacts on precipitation. Asia-Pacific Journal of Atmospheric Sciences, 50(1), 17–30.CrossRefGoogle Scholar
  21. Hu, C., Xu, Y., Han, L., Yang, L., & Xu, G. (2016). Long-term trends in daily precipitation over the Yangtze River delta region during 1960–2012, Eastern China. Theoretical and Applied Climatology, 125(1–2), 131–147.CrossRefGoogle Scholar
  22. Huang, D., Zhang, T., & Zhou, F. (2010). Sea-surface temperature fronts in the Yellow and East China Seas from TRMM microwave imager data. Deep Sea Research Part II: Topical Studies in Oceanography, 57(11), 1017–1024.CrossRefGoogle Scholar
  23. Huang, Y., Chen, S., Cao, Q., Hong, Y., Wu, B., Huang, M., Qiao, L., Zhang, Z., Li, Z., Li, W., & Yang, X. (2013). Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing extreme heavy rainfall event of 21 July 2012. Water, 6(1), 32–44.CrossRefGoogle Scholar
  24. Huffman, G. J., Bolvin, D. T., Nelkin, E. J., Wolff, D. B., Alder, R. F., Gu, G., Hong, Y., Bowman, K. P., & Stocker, E. F. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.CrossRefGoogle Scholar
  25. IPCC (Intergovernmental Panel on Climate Change). (2013). Summary for policymakers. In Climate change 2013: the physical science basis. In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  26. Jia, S., Zhu, W., Lű, A., & Yan, T. (2011). A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sensing of Environment, 115(12), 3069–3079.CrossRefGoogle Scholar
  27. Joyce, R. J., Janowiak, J. E., Arkin, P. A., & Xie, P. (2004). CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5, 487–503.CrossRefGoogle Scholar
  28. Kaya, L. G., Kaynakci-Elinc, Z., Yucedag, C., & Cetin, M. (2018). Environmental outdoor plant preferences: a practical approach for choosing outdoor plants in urban or suburban residential areas in Antalya, Turkey. Fresenius Environmental Bulletin, 27(12), 7945–7952.Google Scholar
  29. Kidd, C., & Huffman, G. (2011). Global precipitation measurement. Meteorological Applications, 18(3), 334–353.CrossRefGoogle Scholar
  30. Li, D., Chistakos, G., Ding, X., & Wu, J. (2017a). Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). Journal of Hydrology, 556, 1139–1152.CrossRefGoogle Scholar
  31. Li, W., Liu, C., Scaioni, M., Sun, W., Chen, Y., Yao, D., Chen, S., Hong, Y., Zhang, K., & Cheng, G. (2017b). Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall ID thresholds. Science China Earth Sciences, 60(4), 720–732.CrossRefGoogle Scholar
  32. Liang, P., & Ding, Y. (2017). The long-term variation of extreme heavy precipitation and its link to urbanization effects in Shanghai during 1916–2014. Advances in Atmospheric Sciences, 34(3), 321–334.Google Scholar
  33. Liang, P., Ding, Y. H., He, J. H., & Tang, X. (2013). Study of relationship between urbanization speed and change in spatial distribution of rainfall over Shanghai. Journal of Tropical Meteorology, 19, 97–103.Google Scholar
  34. Libertino, A., Sharma, A., Lakshmi, V., & Claps, P. (2016). A global assessment of the timing of extreme rainfall from TRMM and GPM for improving hydrologic design. Environmental Research Letters, 2016, 11(5).Google Scholar
  35. Lu, M., Xu, Y., Shan, N., Wang, Q. (2019). Effect of urbanisation on extreme precipitation based on nonstationary models in the Yangtze River Delta metropolitan region. Science of The Total Environment, 673, 64–73.CrossRefGoogle Scholar
  36. Meehl, G. A., Arblaster, J. M., & Tebaldi, C. (2005). Understanding future patterns of increased precipitation intensity in climate model simulations. Geophysical Research Letters, 32(18), 109–127.CrossRefGoogle Scholar
  37. O’Gorman, P. A. (2015). Precipitation extremes under climate change. Current Climate Change Reports, 1(2), 49–59.CrossRefGoogle Scholar
  38. Olson, W. S., Kummerow, C. D., Heymsfield, G. M., & Giglio, L. (1996). A method for combined passive–active microwave retrievals of cloud and precipitation profiles. Journal of Applied Meteorology, 35(10), 1763–1789.CrossRefGoogle Scholar
  39. Pendergrass, A. G., & Knutti, R. (2018). The uneven nature of daily precipitation and its change. Geophysical Research Letters, 45(21), 11,980–11,988.CrossRefGoogle Scholar
  40. Pfeifer, M., Disney, M., Quaife, T., & Marchant, R. (2011). Terrestrial ecosystems from space: a review of earth observation products for macroecology applications. Global Ecology and Biogeography, 21(6), 603–624.CrossRefGoogle Scholar
  41. Qian, W. H., & Lin, X. (2005). Regional trends in recent precipitation indices in China. Meteorology and Atmospheric Physics, 90(3–4), 193–207.CrossRefGoogle Scholar
  42. Quan, R. (2014). Risk assessment of flood disaster in Shanghai based on spatial–temporal characteristics analysis from 251 to 2000. Environmental Earth Sciences, 72(11), 4627–4638.CrossRefGoogle Scholar
  43. Rajasekar, U., & Weng, Q. (2009). Urban heat island monitoring and analysis using a non-parametric model: a case study of Indianapolis. ISPRS Journal of Photogrammetry and Remote Sensing, 64(1), 86–96.CrossRefGoogle Scholar
  44. Schneider, U., Becker, A., Finger, P., Meyer-Christoffer, A., Ziese, M., & Rudolf, B. (2014). GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theoretical and Applied Climatology, 115(1–2), 15–40.CrossRefGoogle Scholar
  45. Shen, Y., Xiong, A., Wang, Y., & Xie, P. (2010). Performance of high–resolution satellite precipitation products over china. Journal of Geophysical Research-Atmospheres, 115(D2), 355–365.CrossRefGoogle Scholar
  46. Song, X., Zhang, J., AghaKouchak, A., Roy, S. S., Xuan, Y., Wang, G., He, R., Wang, X., & Liu, C. (2014). Rapid urbanization and changes in spatiotemporal characteristics of precipitation in Beijing metropolitan area. Journal of Geophysical Research-Atmospheres, 119(19), 11,250–11,271.CrossRefGoogle Scholar
  47. Sorooshian, S., Hsu, K. L., Gao, X., Gupta, H. V., Imam, B., & Dan, B. (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bulletin of the American Meteorological Society, 81, 2035–2046.CrossRefGoogle Scholar
  48. Tang, Q., Zhang, X., & Francis, J. A. (2014). Extreme summer weather in northern mid-latitudes linked to a vanishing cryosphere. Nature Climate Change, 4(1), 45–50.CrossRefGoogle Scholar
  49. Tarnavsky, E., Mulligan, M., Ouessar, M., Faye, A., & Black, E. (2013). Dynamic hydrological modeling in drylands with TRMM based rainfall. Remote Sensing, 5(12), 6691–6716.CrossRefGoogle Scholar
  50. Tebaldi, C. A., & Knutti, R. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A - Mathematical Physical and Engineering Sciences, 365(1857), 2053–2075.CrossRefGoogle Scholar
  51. Wang, Y., & Yan, Z. W. (2009). Trends in seasonal precipitation over china during 1961–2007. Atmospheric & Oceanic Science Letters, 2(3), 165–171.CrossRefGoogle Scholar
  52. Wang, K., Wang, L., Wei, Y. M., & Ye, M. (2013). Beijing storm of July 21, 2012: observations and reflections. Natural Hazards, 67(2), 969.CrossRefGoogle Scholar
  53. Wu, Y., Wu, S. Y., Wen, J., Xu, M., & Tan, J. (2015). Changing characteristics of precipitation in China during 1960–2012. International Journal of Climatology, 36(3), 1387–1402.CrossRefGoogle Scholar
  54. Xu, W., Zipser, E. J., & Liu, C. (2009). Rainfall characteristics and convective properties of mei-yu precipitation systems over South China, Taiwan, and the South China Sea. Part I: TRMM observations. Monthly Weather Review, 137(12), 4261–4275.CrossRefGoogle Scholar
  55. Yang, X. (2013). China’s rapid urbanization. Science, 342(6156), 310–310.CrossRefGoogle Scholar
  56. Yang, L., Scheffran, J., Qin, H., & You, Q. (2015). Climate-related flood risks and urban responses in the Pearl River Delta, China. Regional Environmental Change, 15(2), 379–391.CrossRefGoogle Scholar
  57. Yucedag, C., Kaya, L. G., & Cetin, M. (2018). Identifying and assessing environmental awareness of hotel and restaurant employees’ attitudes in the Amasra District of Bartin. Environmental Monitoring and Assessment, 190(2), 60.CrossRefGoogle Scholar
  58. Zeng, J., Chen, K. S., Bi, H., & Chen, Q. (2016). A preliminary evaluation of the SMAP radiometer soil moisture product over United States and Europe using ground-based measurements. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4929–4940.CrossRefGoogle Scholar
  59. Zhai, P., Sun, A., Ren, F., Liu, X., Gao, B., & Zhang, Q. (1999). Changes of climate extremes in China. Climate Change, 42(1), 203–218.CrossRefGoogle Scholar
  60. Zhai, P., Zhang, X., Wan, H., & Pan, X. (2005). Trends in total precipitation and frequency of daily precipitation extremes over china. Journal of Climate, 18(7), 1096–1108.CrossRefGoogle Scholar
  61. Zhang, G., Biradar, C. M., Xiao, X., Dong, J., Zhou, Y., Qin, Y., Zhang, Y., Liu, F., Ding, M., & Thomas, R. (2018). Exacerbated grassland degradation and desertification in Central Asia during 2000–2014. Ecological Applications, 28(2), 442–456.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Weiyue Li
    • 1
    • 2
    • 3
  • Min Zhao
    • 3
    Email author
  • Marco Scaioni
    • 4
  • Seyed Reza Hosseini
    • 5
  • Xiang Wang
    • 6
  • Dongjing Yao
    • 2
  • Kaihang Zhang
    • 7
  • Jun Gao
    • 1
    • 2
  • Xin Li
    • 8
    • 9
  1. 1.Institute of Urban StudiesShanghai Normal UniversityShanghaiChina
  2. 2.School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
  3. 3.Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and EnvironmentLinyiChina
  4. 4.Department of Architecture, Built Environment and Construction EngineeringPolitecnico di MilanoMilanItaly
  5. 5.Department of Civil and Environmental EngineeringPolitecnico di MilanoMilanItaly
  6. 6.Linyi Natural Resources and Planning BureauLinyiChina
  7. 7.Institute of TourismShanghai Normal UniversityShanghaiChina
  8. 8.Institute of Tibetan Plateau ResearchChinese Academy of SciencesBeijingChina
  9. 9.CAS Center for Excellence in Tibetan Plateau Earth SciencesChinese Academy of SciencesBeijingChina

Personalised recommendations