Potential mobility assessment of metals in salt marsh sediments from San Antonio Bay

  • Carmen H MarinhoEmail author
  • Erica Giarratano
  • Claudia E Domini
  • Mariano Garrido
  • Mónica N Gil


The BCR method was applied on sediments from the salt marsh of San Antonio Bay (SAB). It presents several channels among which the Encerrado is the most important and is impacted by abandoned mining wastes. The pseudototal concentrations of metals measured within this channel were relatively higher than in outer sites, and according to the Igeo index, its contamination level was low. The metal distribution in the different phases of sediment particles showed that the residual component, considered the safest from the environmental point of view, accounted for most of the Fe, Cd, Cu, and Zn contents. Conversely, Pb was mainly in the non-residual component as part of the reducible fraction, thus constituting the main environmental hazard among the studied elements. The predominance of residual and reducible fractions indicated a historic contamination of metal such as Pb, Cu, and Zn from the mining wastes. The low exchangeable and oxidizable fractions would indicate no actual input of metals.


Mining wastes BCR method Metals 



This study was partially funded by CONICET, through a doctoral fellowship to the first author, and Secretaria de Ciencia y Técnica of Universidad Nacional de la Patagonia San Juan Bosco (PI 1281 to MG and CM).

Supplementary material

10661_2019_7895_MOESM1_ESM.docx (33 kb)
ESM 1 (DOCX 32 kb)


  1. Acosta, J. A., Jansen, B., Kalbitz, K., Faz, A., & Martínez, S. (2011). Salinity increases mobility of heavy metals in soils. Chemosphere, 85, 1318–1324.CrossRefGoogle Scholar
  2. Alvarez, M. B., Garrido, M., Lista, A. G., & Fernández Band, B. S. (2008). Three-way multivariate analysis of metal fractionation results from sediment samples obtained by different sequential extraction procedures and ICP-OES. Anal Chim Acta, 620, 34–43.CrossRefGoogle Scholar
  3. Alvarez, M. B., Quintas, P. Y., Domini, C. E., Garrido, M., Lista, A. G., & Fernández Band, B. S. (2014). Chemometric approach to visualize and easily interpret data from sequential extraction procedures applied to sediment samples. J Hazard Mater, 274, 455–464.CrossRefGoogle Scholar
  4. Bacon, J. R., Farmer, J. G., Dunn, S. M., Graham, M. C., & Vinogradoff, S. I. (2006). Sequential extraction combined with isotope analysis as a tool for the investigation of lead mobilisation in soils: application to organic-rich soils in an upland catchment in Scotland. Environ Pollut, 141(3), 469–481.CrossRefGoogle Scholar
  5. Bonuccelli, R., Malán, J., Luna, L., & Torres, L. (2004). Contaminación por metales pesados derivados de la lixiviación de escorias de fundición. San Antonio Oeste. Río Negro. IBMP Serie Publicaciones, 3, 63–66.Google Scholar
  6. Boruvka, L., & Vacha, R. (2006). Litavka river alluvium as a model area heavily polluted with potentially risk elements. In J. L. Morel, G. Echevarria, & N. Goncharova (Eds.), Phytoremediation of metal-contaminated soils, vol 68. NATO Science Series IV Earth and Environmental Sciences (pp. 267–298). Netherlands: Springer.Google Scholar
  7. Botsou, F., Godelitsas, A., Kaberi, H., Mertzimekis, T. J., Goettlicher, J., Steininger, R., & Scoullos, M. (2015). Distribution and partitioning of major and trace elements in pyrite-bearing sediments of a Mediterranean coastal lagoon. Chemie der Erde, 75, 219–236.CrossRefGoogle Scholar
  8. Bro R. (1998). Multi-way analysis in the food industry: Models, algorithms, and applications, in: Ph.D. Thesis, University of Amsterdam, Amsterdam. pp 290.Google Scholar
  9. Bro, R. (2006). Review on multiway analysis in chemistry - 2000–2005. Critical Reviews in Analytical Chemistry, 36(3-4), 279–293.CrossRefGoogle Scholar
  10. Bro R., Anderson C. A., 2013. N-way Toolbox for MATLAB (TM) (
  11. Carbone, M. E., Melo, W. D., & Piccolo, M. C. (2014). Procesos ambientales que afectan la bahía de San Antonio y su área de adyacencia (Prov. De Río Negro). Huellas, 18 ISSN: 0329-0573 (impresa) / 2362-5643 (en línea).Google Scholar
  12. Ceulemans, E., & Kiers, H. K. L. (2006). Selecting among three-mode principal component models of different types and complexities: a numerical convex hull based method. Br J Math Stat Psychol, 56, 133–150.CrossRefGoogle Scholar
  13. Cuong, D., & Obbard, J. P. (2006). Metal speciation in coastal marine sediments from Singapore using a modified BCR sequential extraction procedure. Appl Geochem, 21, 1335–1346.CrossRefGoogle Scholar
  14. Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the threestage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta, 363, 45–55.CrossRefGoogle Scholar
  15. Dong, Y., Ma, L. Q., & Rhue, R. D. (2000). Relation of enhanced Pb solubility to Fe partitioning in soils. Environ Pollut, 110, 515–522.CrossRefGoogle Scholar
  16. Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuar Coast Shelf Sci, 77, 589–602.CrossRefGoogle Scholar
  17. Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ, 407, 3972–3985.CrossRefGoogle Scholar
  18. Fatela, F., Moreno, J., Moreno, F., Araújo, M. F., Valente, T., Antunes, C., Taborda, R., Andrade, C., & Drago, T. (2009). Environmental constraints of foraminiferal assemblages distribution across a brackish tidal marsh (Caminha, NW Portugal) Mar. Micropaleontol., 70, 70–88.CrossRefGoogle Scholar
  19. Förstner, U., Lechsber, R. U., Davis, R. A., & L'Hermitte, P. (1985). Chemical methods for assessing bioavailable metals in sludges. In M. Meguellati & D. P. Robbe (Eds.), Marchandise, M. Astruc. Proc. Int. Conf. on Heavy Metals in the Environment, Heidelberg CEP Consultants, Edinburgh (1983) (p. 1090). London: Elsevier.Google Scholar
  20. Fucks, E. E., Scalise, A. H., & Schnack, E. J. (2011). Evaluación de alternativas para la conservación y manejo del frente costero en Las Grutas, Río Negro. In Informe Final. Provincia de Rio Negro y Consejo Federal de Inversiones.Google Scholar
  21. Gibbons, R. D., & Coleman, D. E. (2001). Statistical methods for detection and quantification of environmental contamination (p. 139). NY: John Willey & Sons.Google Scholar
  22. Gil, M. N., Harvey, M., & Esteves, J. L. (1999). Heavy metals in intertidal sediments from Patagonian Coast, Argentina. Bull Environ Cont Toxicol, 63, 52–58.CrossRefGoogle Scholar
  23. Gobierno de la provincia de Río Negro. (2013). Plan de Manejo Área Natural Protegida Bahía de San Antonio Río Negro. Pp 308.Google Scholar
  24. Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & Vivo, B. D. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). J Geochem Explor, 119–120, 32–43.CrossRefGoogle Scholar
  25. Hatje, V., Payne, T. E., Hill, D. M., McOrist, G., Birch, G. F., & Szymczak, R. (2003). Kinetics of trace element uptake and release by particles in estuarine waters: effects of pH, salinity, and particle loading. Environ Int, 29, 619–629.CrossRefGoogle Scholar
  26. Idaszkin, Y. L., Lancelotti, J. L., Bouza, P. J., & Marcovecchio, J. E. (2015). Accumulation and distribution of trace metals within soils and the austral cordgrass Spartina densiflora in a Patagonian salt marsh. Mar Pollut Bull, 101(1), 457–465.CrossRefGoogle Scholar
  27. Isacch, J. P., Costa, C. S. B., Rodríguez-Gallego, L., Conde, D., Escapa, M., Gagliardini, D. A., & Iribarne, O. O. (2006). Distribution of saltmarsh plant communities associated with environmental factors along a latitudinal gradient on the south-west Atlantic coast. J Biogeogr, 33, 888–900.CrossRefGoogle Scholar
  28. Larner, B. L., Seen, A. J., & Townsend, A. T. (2006). Comparative study of optimized BCR sequential extraction scheme and acid leaching of element in the certified reference material NIST 2711. Anal Chim Acta, 556, 444–449.CrossRefGoogle Scholar
  29. Lu, Z. B., & Kang, M. (2017). Risk assessment of toxic metals in marine sediments from the Arctic Ocean using a modified BCR sequential extraction procedure. J Environ Sci Health Part A, 1–16.Google Scholar
  30. Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., & Liu, Y. (2016). Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144, 264–272.CrossRefGoogle Scholar
  31. Marinho, C. H., Giarratano, E., Esteves, J. L., Narvarte, M. A., & Gil, M. N. (2017). Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina). Environ Sci Pollut R doi, 24, 6724–6735. Scholar
  32. Marinho, C. H., Giarratano, E., & Gil, M. N. (2018). Metal biomonitoring in a Patagonian salt marsh. Environ Monit Assess, 190, 598–514. Scholar
  33. McComb, J., Alexander, T. C., Han, F. X., & Tchounwow, P. B. (2014). Understanding biogeochemical cycling of trace elements and heavy metals in estuarine ecosystems. J Bioremed Biodegr, 5, 1000–1118. Scholar
  34. Morillo, J., Usero, J., & Gracia, I. (2004). Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere, 55, 431–442.CrossRefGoogle Scholar
  35. Neff, J. M. (2002). Cadmium in the Ocean. Bioaccumulation in Marine Organisms, 89–102. Scholar
  36. Pardo, R., Vega, M., Debán, L., Cazurro, C., & Carretero, C. (2008). Modelling of chemincal fractionation patterns of metals in soils by two-way and three-way principal component analysis. Anal Chim Acta, 606, 26–36.CrossRefGoogle Scholar
  37. Rauret, G., López Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., & Quevauviller, P. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit, 1, 57–61.CrossRefGoogle Scholar
  38. Rule, J. H. (1998). Trace metal cation adsorption in soils: selective chemical extractions and biological availability. In Dabrowski (Ed.), Adsorption and its applications in industry and environmental protection. Studies in surface science and catalysis (Vol. 120, pp. 319–349). Elseiver Science BV.Google Scholar
  39. Sahoo, P. K., Equeenuddin, S. M., & Powell, M. A. (2016). Trace elements in soils around coal mines: current scenario, impact and available techniques for management. Curr Pollution Rep, 2, 1–14.CrossRefGoogle Scholar
  40. Sheoran, A. S., & Sheoran, V. (2006). Heavy metals removal mechanism of acid mine drainage in wetlands: a critical review. Minerals Engineering, 19, 105–111.CrossRefGoogle Scholar
  41. Shiowatana, J., McLaren, R. G., Chanmekha, N., & Samphao, A. (2001). Fractionation of arsenic in soil by a continuousflow sequential extraction method. J Environ Qual, 30, 1940–1949.CrossRefGoogle Scholar
  42. Stanimirova, I., Kita, A., Malkowski, E., John, E., & Walczak, B. (2009). N-way exploration of environmental data obtained from sequential extraction procedure. Chemom Intell Lab Syst, 96, 203–209.CrossRefGoogle Scholar
  43. Sundaray, S. K., Nayak, B. B., Lin, S., & Bhatta, D. (2011). Geochemical speciation and risk assessment of heavy metals in the river estuarine sediments—a case study: Mahanadi Basin, India. J Hazard Mater, 186, 1837–1846.CrossRefGoogle Scholar
  44. Sungur, A., Soylak, M., Yilmaz, S., & Özcan, H. (2014). Determination of heavy metals in sediments of the Ergene River by BCR sequential extraction method. Environ Earth Sci, 72(9), 3293–3305.CrossRefGoogle Scholar
  45. Sutherland, R. A. (2002). Comparison between non-residual Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by a three-step sequential extraction procedure and a dilute hydrochloric acid leach for soil and road deposited sediment. App Geochem, 17, 353–365.CrossRefGoogle Scholar
  46. Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace elements. Anal Chem, 51, 844–851.CrossRefGoogle Scholar
  47. Tokalioglu, S., Kartal, S., & Elci, L. (2000). Determination of heavy metals and their speciation in lake sediments by flame atomic absorption spectrometry after a four-stage sequential extraction procedure. Anal Chim Acta, 413, 33–40.CrossRefGoogle Scholar
  48. Tsakovski, S., Kudlak, B., Simeonov, V., Wolska, L., Garcia, G., Dassenakis, M., & Namiesnik, J. (2009). N-way modelling of sediment monitoring data from Mar Menor lagoon, Spain. Talanta, 80, 935–941.CrossRefGoogle Scholar
  49. Ure, A. M., Quevauviller, P. H., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of Commission of the European Communities. Int J Environ Anal Chem, 51(1-4), 135–151.CrossRefGoogle Scholar
  50. Vázquez, N., Gil, M. N., Esteves, J. L., & Narvarte, M. (2007). Monitoring heavy metal pollution in San Antonio Bay, Río Negro, Argentina. Bull Environ Contam Toxicol, 79, 121–125.CrossRefGoogle Scholar
  51. Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. Int J Environ Sci Tech, 7(3), 485–496.CrossRefGoogle Scholar
  52. Zhao, S., Feng, C., Wang, D., Liu, Y., & Shen, Z. (2013). Salinity increases the mobility of Cd, Cu, Mn, and Pb in the sediments of Yangtze Estuary: relative role of sediments properties and metal speciation. Chemosphere, 91, 977–984.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro Para el Estudio de Sistemas Marinos (CESIMAR, CCT CONICET CENPAT)Puerto MadrynArgentina
  2. 2.Instituto de Química del SurINQUISUR (UNS-CONICET)Bahía BlancaArgentina

Personalised recommendations