Advertisement

Assessment of groundwater pollution near Aba-Eku municipal solid waste dumpsite

  • Olukemi AromolaranEmail author
  • Obasola E. Fagade
  • Olawale K. Aromolaran
  • Emmanuel T. Faleye
  • Harald Faerber
Article
  • 18 Downloads

Abstract

Municipal solid waste (MSW) dumpsite constitutes a major anthropogenic point source of leachate contamination to the ambient groundwater and poses a significant threat to the geo-ecosystem. This study investigated the pollution of groundwater by leachate emanating from Aba-Eku MSW dumpsite in Ibadan, Nigeria, using bacteriological, hydrochemical, and geophysical techniques. There is a diversity of bacteria in the leachate and the dominant phyla being proteobacteria (83%) and firmicutes (17%). The mean concentrations (mg/L) of Mn, Fe, Al, Cu, Mo, and Cr in the leachate samples were above the World Health Organization wastewater discharge limits. The hydrochemical parameters of the groundwater samples around the dumpsite were generally within the permissible limits, except for K and Cl; which invariably indicate major inputs from water-rock interaction and minor contributions from the dumpsite. Three geoelectrical layers were indicated from the vertical electrical sounding data, which are the topsoil, the lateritic clay layer, and the weathered basement. Low resistivity values of 5–33 Ωm and 3–24 Ωm were obtained within 2 m and 5.5 m depths for the topsoil and the lateritic layer, respectively; while the 2-D subsurface model reveals leachate plume beyond 5 m. Although the MSW leachate is heterogeneous, the hydrochemical data show that the aquifer around the dumpsite has not been seriously polluted with the leachate, but there is a continuous percolation of leachate into the soil subsurface, based on the geophysical findings. Discontinuing waste dumping and groundwater extraction, which would over time reduce the leachate plume, are measures to enhance the groundwater quality in the area.

Keywords

Municipal solid waste Leachates Aba-Eku Soil subsurface Nigeria 

Notes

Acknowledgements

The authors are sincerely grateful to the Institute of Hygiene and Public Health, University of Bonn, Germany for analysing the elemental components of the leachate samples. The efforts of Messrs. Andrew Akingbesote and Oladiran Aromolaran during geophysical surveys are gratefully acknowledged. Drs M. A. Fakunle, A. O. Ojo, and A. C. Oyelami are deeply appreciated for their stimulating discussions that helped to improve this manuscript. We are grateful to the editor for his valuable editorial comments and the reviewers for their highly insightful comments and suggestions.

References

  1. Abdel-Salam, M. M., & Abu-Zuid, G. J. (2015). Impact of landfill leachate on the groundwater quality: a case study in Egypt. Journal of Advance Research, 6(4), 579–586.CrossRefGoogle Scholar
  2. Abdelwaheb, A., Moncef, Z., & Hamed, B. D. (2012). Landfill leachate generation and its impact on water at urban landfill (Jabel Chakir, Tunisia). Hydrology: Current Research, 3, 128.Google Scholar
  3. Abimbola, A. F., Laniyan, T. A., Okunola, O. W., Odewande, A. A., Ajibade, O. M., & Kolawole, T. (2005). Water quality test of areas surrounding selected refuse dumpsites in Ibadan, southwestern Nigeria. Water Resources, 16, 39–48.Google Scholar
  4. Aluko, O. O., & Sridhar, M. K. C. (2005). Application of constructed wetlands to the treatment of leachate from a MSW landfill in Ibadan, Nigeria. Journal of Environmental Health, 67(10), 58–62.Google Scholar
  5. Ameloko, A. A., & Ayolabi, E. A. (2008). Geophysical assessment for vertical leachate migration profile and physicochemical study of groundwater around Olusosan dumpsite Lagos, southwest Nigeria. Applied Water Science, 8, 42.Google Scholar
  6. American Public Health Association (APHA). (1998). Standard methods for examination of water and wastewater (18th ed.). Washington DC: American Public Health Association.Google Scholar
  7. Amuda, O. S., Adebisi, S. A., Jimoda, L. A., & Alade, A. O. (2014). Challenges and possible panacea to the MSW management in Nigeria. Journal of Sustainable Development Studies, 6(1), 64–70.Google Scholar
  8. Annepu, R. K. (2012). Sustainable solid waste management in India. MSc. Project. Earth Engineering Centre, Columbia University, New York, USA 50 pp.Google Scholar
  9. Ariyo, S. O., Omosanya, K. O., & Oshinloye, B. A. (2013). Electrical resistivity imaging of contaminant zone at Sotubo dumpsite along Sagamu-Ikorodu, southwestern Nigeria. African Journal of Environmental Science and Technology, 7, 312–320.Google Scholar
  10. Atlas, R. M., & Bartha, R. (1993). Microbial ecology fundamentals and application. Third Edition, The Benjamin/Cummings Canada, 559 pp.Google Scholar
  11. Ayuba, K. A., Manaf, L. A., Sabrina, A. H., & Azmin, S. W. N. (2013). Current status of MSW management in FCT Abuja. Research Journal of Environmental and Earth Sciences, 5(6), 295–304.CrossRefGoogle Scholar
  12. Bailey, B. L., Smith, L. J. D., Blowes, D. W., Ptacek, C. J., Smith, L., & Sego, D. C. (2013). Diavik waste rock project: persistence of contaminants from blasting agents in waste rock effluent. Applied Geochemistry, 36, 256–270.CrossRefGoogle Scholar
  13. Banar, M., Ozkan, A., & Kurkcuoglu, M. (2006). Characterization of leachate in an urban landfill by physicochemical analysis and solid phase microextraction-GCMS. Environmental Monitoring and Assessment, 121, 439–459.CrossRefGoogle Scholar
  14. Benson, R. C. (1993). Geophysical techniques for subsurface site characterization. In D. E. Daniel (Ed.), Geotechnical Practice for Waste Disposal (pp. 311–357). London: Chapman and Hall.CrossRefGoogle Scholar
  15. Benson, A. K., Payne, K. L., & Stubben, M. A. (1997). Mapping groundwater contamination using DC resistivity and VLF geophysical methods: a case study. Geophysics, 62, 80–86.Google Scholar
  16. Bichet, V., Grisey, E., & Aleya, L. (2016). Spatial characterization of leachate plume using electrical resistivity tomography in a landfill composed of old and new cells (Belfort, France). Engineering Geology, 211, 61–73.CrossRefGoogle Scholar
  17. Blackmore, S., Pedretti, D., Mayer, K. U., Smith, L., & Beckie, R. D. (2018). Evaluation of single- and dual-porosity models for reproducing the release of external and internal tracers from heterogeneous waste-rock piles. Journal of Contaminant Hydrology, 214, 65–74.CrossRefGoogle Scholar
  18. Cardarelli, E., & Bernabini, M. (1997). Two case studies of the determination of parameters of urban waste dumps. Journal of Applied Geophysics, 36, 167–174.CrossRefGoogle Scholar
  19. Christensen, J. B., Tipping, E., Kinniburgh, D. G., Grøn, C., & Christensen, T. H. (1998). Proton binding by groundwater fulvic acids of different age, origin and structure modeled with Model V and the NICA-Donnan Model. Environmental Science and Technology, 32, 3346–3355.CrossRefGoogle Scholar
  20. Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., Albrechtsen, H.-J., & Heron, G. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.CrossRefGoogle Scholar
  21. Christenson, S. C., Scholl, M. A., Schlottmann, J. L., & Becker, C. J. (1999). Groundwater and surface water hydrology of the Norman landfill research site. US Geological Survey Water Resources Investigation Report no. 99-4018C, Reston, VA.Google Scholar
  22. Darnault, C. J. D., Steenhuis, T. S., Garnier, P., Kim, Y. J., Jenkins, M. B., Ghiorse, W. C., Beveye, P. C., & Parlange, J. Y. (2004). Preferential flow and transport of Cryptosporidium parvum oocyst through the vadose zone: experimenting and modeling. Vadose Zone Journal, 3(2), 262–270.Google Scholar
  23. Ehinola, O. A. (2002). Hydrochemical characteristics of groundwater in parts of the Basement Complex of southwestern Nigeria. Journal of Mining and Geology, 38(2), 125–133.CrossRefGoogle Scholar
  24. El-Fadel, M., Findikakis, A. N., & Leckie, J. O. (1997). Environmental impact of solid waste landfilling. Journal of Environmental Management, 50(1), 1–25.CrossRefGoogle Scholar
  25. Fadiran, A. O., Dlamini, S. C., & Mavuso, A. (2008). A comparative study of the phosphate levels in some surface and ground water bodies of Swaziland. Bulletin of Chemical Society of Ethiopia, 22(2), 197–206.CrossRefGoogle Scholar
  26. Fernandez, D. S., Puchulu, M. E., & Georgieff, S. M. (2014). Identification and assessment of water pollution as a consequence of a leachate plume migration from a municipal landfill site (Tucuman, Argentina). Environmental Geochemistry and Health, 36, 489–503.CrossRefGoogle Scholar
  27. Ganiyu, S. A., Badmus, B. S., Oladunjoye, M. A., Aizebeokhai, A. P., & Olurin, O. T. (2015). Delineation of leachate plume migration using electrical resistivity imaging on Lapite Dumpsite in Ibadan, southwestern Nigeria. Geoscience, 5(2), 70–80.Google Scholar
  28. Gerba, C. P., & Smith, J. E. (2005). Source of pathogenic microorganisms and their fate during land application of waste. Journal of Environmental Quality, 34, 42–48.Google Scholar
  29. Gerba, C. P., Tamimi, A. H., Pettigrew, C., Weisbrod, A. V., & Rajagopalan, V. (2011). Sources of microbial pathogens in municipal solid waste landfills in the USA. Waste Management and Research, 29(8), 781–790.CrossRefGoogle Scholar
  30. Giang, N. V., Kochanek, K., Vu, N. T., & Duan, N. B. (2018). Landfill leachate assessment by hydrological and geophysical data: case study of NamSon, Hanoi, Vietnam. Journal of Material Cycle and Waste Management, 20, 1648–1662.CrossRefGoogle Scholar
  31. Gomez, A. M., Yannarell, A. C., Sims, G. K., & Cadavid-Restrepo, G. (2011). Characterization of bacterial diversity at different depth in the Moravia Hill landfill site at Medellin, Colombia. Soil Biology and Biochemistry, 43, 1275–1284.CrossRefGoogle Scholar
  32. Hamza, U., Jeeva, M., & Ali, N. A. M. (2014). Electrical resistivity technique and chemical analysis in the study of leachate migration at Sungai Sedu landfill. Asian Journal of Applied Sciences, 7, 518–535.CrossRefGoogle Scholar
  33. Han, D., Tong, X., Currell, M. J., Cao, G., Jin, M., & Tong, C. (2014). Evaluation of the impact of an uncontrolled landfill on surrounding groundwater quality, Zhoukou, China. Journal of Geochemical Exploration, 136, 24–39.CrossRefGoogle Scholar
  34. Huang, L. N., Zhou, H., Zhu, S., & Qu, L. H. (2004). Phylogenetic diversity of bacteria in the leachate of a full-scale recirculating landfill. FEMS Microbial Ecology, 50, 175–183.CrossRefGoogle Scholar
  35. Huang, L., Zhu, S., Zhou, H., & Qu, L. (2005). Molecular phylogenetic diversity of bacteria associated with the leachate of a closed municipal solid waste landfill. FEMS Letters, 242, 297–303.CrossRefGoogle Scholar
  36. Ikem, A., Osibanjo, O., Shridhar, M. K. C., & Sobande, A. (2002). Evaluation of groundwater quality characteristics near two waste sites in Ibadan and Lagos, Nigeria. Water, Air and Soil Pollution, 140, 307–333.CrossRefGoogle Scholar
  37. Jabari, L., Gannoun, H., Khelifi, E., Cayol, J. L., Godon, J. J., Handi, M., & Fardeau, M. L. (2016). Bacterial ecology of abattoir wastewater treated by an anaerobic digester. Brazilian Journal of Microbiology, 47(1), 73–84.CrossRefGoogle Scholar
  38. Jorstad, L. B., Jankowski, J., & Acworth, R. I. (2004). Analysis of the distribution of inorganic constituents in a landfill leachate contaminated aquifers Astrolabe Park, Sydney, Australia. Environmental Geology, 46, 263–272.CrossRefGoogle Scholar
  39. Kale, S. S., Kadam, A. K., Kumar, S., & Pawar, N. J. (2010). Evaluating pollution potential of leachate from landfill site from the Pune Metropolitan City and its impact on shallow basaltic aquifer. Environmental Monitoring and Assessment, 162, 327–346.CrossRefGoogle Scholar
  40. Kanownik, W., & Policht-Latawiec, A. (2016). Impact of municipal landfill site on groundwater quality in the Wlosanka stream. Journal of Ecological Engineering, 17(4), 57–64.CrossRefGoogle Scholar
  41. Kaya, M. A., Ozurlan, G., & Sengul, E. (2007). Delineation of soil and groundwater contamination using geophysical methods at a waste disposal site in Canakkale, Turkey. Environmental Monitoring and Assessment, 135, 441–446.CrossRefGoogle Scholar
  42. Kehew, A. E. (2001). Applied chemical hydrogeology (368p). Upper Saddle River: Prentice Hall.Google Scholar
  43. Kjeldsen, P., Barlaz, M. A., Rooker, A. P., Baun, A., Ledin, A., & Christensen, T. H. (2002). Present and long term composition of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology, 32, 297–336.CrossRefGoogle Scholar
  44. Krishnamurthi, S., & Chakrabarti, T. (2013). Diversity of bacteria and archaea from a landfill in Chandigarh, India is revealed by culture-dependent and culture-independent molecular approaches. Systematic and Applied Microbiology, 36, 56–68.CrossRefGoogle Scholar
  45. Kumar, D., & Alappat, B. J. (2005). Evaluating leachate contamination potential of landfill sites using leachate pollution index. Clean Technologies and Environmental Policy, 7, 190–197.CrossRefGoogle Scholar
  46. Ludvigsen, L., Albrechtsen, H.-J., Ringelberg, D. B., Ekelund, F., & Christensen, T. H. (1999). Composition and distribution of microbial biomass in a landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecology, 37, 197–207.CrossRefGoogle Scholar
  47. McBean, E. A., Rovers, F. A., & Farquhar, G. J. (1995). Solid waste landfill engineering and design. Prentice Hall, New Jersey, 521.Google Scholar
  48. Mohod, C. V., & Dhote, J. (2013). Review of heavy metals in drinking water and their effect on human health. International Journal of Innovative Research in Science, Engineering and Technology, 2(7), 2992–2996.Google Scholar
  49. Mor, S., Ravindra, K., Dahiya, R. P., & Chandra, A. (2006). Leachate characterization and assessment of groundwater pollution near landfill site. Environmental Monitoring and Assessment, 118, 435–456.CrossRefGoogle Scholar
  50. Mosuro, G. O., Omosanya, K. O., Bayewu, O. O., Oloruntola, M. O., Laniyan, T. A., Atobi, O., Okebena, M., Popoola, E., & Adekoya, F. (2017). Assessment of groundwater vulnerability to leachate infiltration using electrical resistivity method. Applied Water Science, 7, 2195–2207.CrossRefGoogle Scholar
  51. Munir, S., Tabinda, A. B., Ilyas, A., & Mushtaq, T. (2014). Characterization of leachate and leachate pollution index (LPI) from dumping site in Lahore, Pakistan. Journal of Applied Environmental Biological Sciences, 4(4), 165–170.Google Scholar
  52. Naveen, B. P., Sivapullaiah, P. V., & Sitharam, T. G. (2014). Characteristics of a municipal solid waste landfill leachate. Proceedings of Indian Geotechnical Conference IGC, Kakinada, India pp. 1–7.Google Scholar
  53. Niloufer, S., Swamy, A. V. V. S., & Davi, K. S. (2013). Impact of municipal solid waste on the groundwater quality in Vijayawada City, Andhra Pradesh. Indian Journal of Applied Research, 3(4), 1–3.Google Scholar
  54. NPC. (2006). National Population Commission of Nigeria. www.population.gov.ng.
  55. NSDWQ. (2008). Nigeria standard for drinking water quality, Nigeria Industrial Standard, Approved by Standard Organization of Nigeria Governing Council ICS 13.060.20: 15–19.Google Scholar
  56. Ogunsanwo, O., & Mands, E. (1999). The role of Geology in the evaluation of waste disposal sites. Journal of Mining and Geology, 35(1), 83–87.Google Scholar
  57. Ogunseiju, P., Ajayi, T. R., & Olarenwaju, V. O. (2015). Trace metals and hydraulic characterization of soil and groundwater around Ajakanga dumpsite in Ibadan Metropolis. Journal of Environmental and Earth Sciences, 5(22), 75–94.Google Scholar
  58. Oguntoke, O., Aboderin, O. J., & Bankole, A. M. (2009). Association of water borne disease morbidity pattern and water quality in parts of Ibadan City, Nigeria. Tanzanian Journal of Health Research, 11(4), 189–195.Google Scholar
  59. Oketola, A. A., & Akpotu, S. O. (2015). Assessment of solid waste and dumpsite leachate and topsoil. Chemistry and Ecology, 31(2), 134–146.CrossRefGoogle Scholar
  60. Oladunjoye, M. A., Olayinka, A. I., & Amidu, S. A. (2011). Geoelectrical imaging at an abandoned waste dumpsite in Ibadan, southwestern Nigeria. Journal of Applied Sciences, 11, 3755–3764.CrossRefGoogle Scholar
  61. Olayinka, A. I., & Olayiwola, M. A. (2001). Integrated use of geoelectrical imaging and hydrochemical methods in delineating limits of polluted surface and groundwater at a landfill site in Ibadan area, southwestern Nigeria. Journal of Mining and Geology, 37(1), 55–68.Google Scholar
  62. Olobaniyi, S. B., Ogala, J. E., & Nfor, N. B. (2007). Hydrogeochemical and bacteriological investigation in Agbor area, southern Nigeria. Journal of Mining and Geology, 43(1), 79–89.CrossRefGoogle Scholar
  63. Onu, N. N., & Ibe, K. M. (1998). Geophysical investigation for groundwater in Idah, Lower Benue Trough, Nigeria. Journal of Mining and Geology, 34(1), 43–53.Google Scholar
  64. Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 51–67.CrossRefGoogle Scholar
  65. Pedretti, D., Mayer, K. U., & Beckie, R. D. (2017). Stochastic multicomponent reactive transport analysis of low quality drainage release from waste rock piles: controls of the spatial distribution of acid generating and neutralizing minerals. Journal of Contaminant Hydrology, 201, 30–38.CrossRefGoogle Scholar
  66. Piper, A. M. (1944). A graphical procedure in geochemical interpretation of water analysis. Transactions of American Geophysical Union, 25, 914–923.CrossRefGoogle Scholar
  67. Pujari, P. R., Pardhi, P., Muduli, P., Harkare, P., & Nanoti, M. V. (2007). Assessment of pollution near landfill site in Nagpur, India by resistivity imaging and GPR. Environmental Monitoring and Assessment, 131, 489–500.CrossRefGoogle Scholar
  68. Rahaman, M. A. (1988). Recent advances in the study of the Basement Geology of Nigeria. In: Oluyide, P. O., Mbonu, W. C., Ogezi, A. E., Egbuniwe, A. C., Ajibade, A. C. and Umeji, A. C. (Eds.), Precambrian Geology of Nigeria (pp. 157-163). Geological Survey of Nigeria Special Publication.Google Scholar
  69. Rahaman, A. A., & Lancelot, J. R. (1984). Continental crust evolution in SW Nigeria: constraints from U-Pb dating of pre-Pan-African gneisses. Rapport d’activite 1980-1984. Documents et Travaux du Centre Geologique et Geophysique de Montpellier II 4:41.Google Scholar
  70. Raman, N., & Narayanan, D. S. (2008). Impact of solid waste effect on groundwater and soil quality nearer to Pallavaran solid waste landfill site in Chennai. Rasayan Journal of Chemistry, 1(4), 828–836.Google Scholar
  71. Rollinson, H. R. (1993). Using geochemical data: evaluation, presentation, interpretation. New York: Longman Scientific and Technical 351p.Google Scholar
  72. Salami, L., Fadayini, M. O., & Madu, C. (2014). Assessment of a closed dumpsite and its impact on surface and groundwater integrity: a case of Ofe-Afa dumpsite, Lagos, Nigeria. International Journal of Research and Reviews in Applied Sciences, 18(3), 222–230.Google Scholar
  73. Sawamura, H., Yamada, M., Endo, K., Soda, S., Ishigaki, T., & Ike, M. (2010). Characterization of microorganisms at different landfill depths using carbon-utilization pattern and 16S rRNA gene based T-RFLP. Journal of Bioscience and Bioengineering, 109, 130–137.CrossRefGoogle Scholar
  74. Shabiimam, M. A., & Dikshit, A. K. 2012. Treatment of municipal landfill leachate by oxidants. American Journal of Environmental Engineering, 2(2), 1–5.Google Scholar
  75. Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of the Total Environment, 337, 119–137.CrossRefGoogle Scholar
  76. Somashekar, R. K., & Sonza, P. D. (2013). Assessment of variation/temporal variation and leachate contamination potential of municipal solid waste dumpsite in Bangalore. International Journal of Environmental Protection, 3(1), 28–35.Google Scholar
  77. Song, L., Wang, Y., Tang, W., & Lei, Y. (2015). Bacterial community diversity in municipal waste landfill sites. Applied Microbiology and Biotechnology, 99, 7745–7756.CrossRefGoogle Scholar
  78. Umar, M., Aziz, H. A., & Yusoff, M. S. (2010). Variability of parameters involve in leachate pollution index and determination of leachate pollution index from four landfills in Malaysia. International Journal of Chemical Engineering, 2010, 1–6.CrossRefGoogle Scholar
  79. WHO. (2017). Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization 541p.Google Scholar
  80. Xie, B., Xiong, S., Liang, S., Hu, C., Zhang, X., & Lu, J. (2012). Performance and bacterial compositions of aged refuse reactors treating mature landfill leachate. Bioresource Technology, 103, 71–77.CrossRefGoogle Scholar
  81. Ye, L., & Zhang, T. (2013). Bacterial communities in different sections of a municipal wastewater treatment plant revealed by 16S rDNA 454 pyrosequencing. Applied Microbiology and Biotechnology, 97(6), 2681–2690.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Olukemi Aromolaran
    • 1
    Email author
  • Obasola E. Fagade
    • 2
  • Olawale K. Aromolaran
    • 3
  • Emmanuel T. Faleye
    • 4
  • Harald Faerber
    • 5
  1. 1.Department of Biological SciencesBowen UniversityIwoNigeria
  2. 2.Department of MicrobiologyUniversity of IbadanIbadanNigeria
  3. 3.Department of Geological SciencesOsun State UniversityOsogboNigeria
  4. 4.Department of Physical and Chemical SciencesElizade UniversityIlara-MokinNigeria
  5. 5.Institute of Hygiene and Public HealthUniversity of BonnBonnGermany

Personalised recommendations