Phytoplankton response to water quality seasonality in a Brazilian neotropical river

  • Igor Lima AboimEmail author
  • Doriedson Ferreira Gomes
  • Paulo Oliveira Mafalda Junior


Tropical wet-dry climate seasonality is widely recognized as an important condition to phytoplankton communities’ structure in freshwater ecosystems; however, there are few studies in that field in northeast Brazilian rivers. This study aimed to evaluate the influence of water quality seasonal variability over the phytoplankton dynamics and identify seasonality in eutrophication phenomena in a poorly studied neotropical river. Water quality variables and phytoplankton were examined within the Jequitinhonha River lower course, Bahia (Brazil) from 2010 to 2012. A 3-year time series was analyzed for both rainy and dry seasons. Descriptive, inferential, and multivariate analyses (CCA) were performed. Results indicated that chemical oxygen demand, dissolved aluminum, and turbidity were the main factors which influenced phytoplankton community structure and composition. Dry season was favorable for diatoms and Chlorophyceae (chlorophylls) while rainy season was favorable for cyanobacteria. Still, it was revealed that, in dry season, lower values for turbidity, chemical oxygen demand, dissolved aluminum, and dissolved iron were related with an eutrophication phenomenon.


Phytoplankton ecology Functional groups Jequitinhonha River Eutrophication 



Thanks to CETREL S/A for collecting and analyzing water quality samples.

Funding information

This research was partially supported by VERACEL Papel e Celulose and was conducted during a scholarship Financed by CAPES–Central de Aperfeiçoamento de Pessoal de Ensino Superior–Finance Code 001, within the Ministério da Educação do Brasil.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Alhassan, E. H. (2015). Seasonal variations in phytoplankton diversity in the Bui dam area of the Black Volta in Ghana during the pre-and post-impoundment periods. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 63). Accessed 28 September 2018
  2. Ali, M., & Sreekrishnan, T. (2001). Aquatic toxicity from pulp and paper mill effluents: a review. Advances in Environmental Research, 5(2), 175–196. Scholar
  3. Alvarez-Cobelas, M., Reynolds, C. S., Sanchez-Castillo, P., & Kristiansen, J. (1998). Phytoplankton and Trophic Gradients. Dordrecht: Springer. Scholar
  4. APHA. (2005). Standard methods for the examination of water and wastewater (21st ed.). Washington, DC: American Public Health Association Scholar
  5. Arimoro, F. O., Olisa, H. E., Keke, U. N., Ayanwale, A. V., & Chukwuemeka, V. I. (2018). Exploring spatio-temporal patterns of plankton diversity and community structure as correlates of water quality in a tropical stream. Acta Ecologica Sinica. Scholar
  6. Ayres, M., Ayres Júnior, M., Ayres, D. L., & Santos, A. A. (2007). BioEstat - Aplicações estatísticas nas áreas as ciências Bio-Médicas. Belém, PA: Instituto Mamirauá.Google Scholar
  7. Baker, A. (2003). Land use and water quality. Hydrological Processes, 17(12), 2499–2501. Scholar
  8. Bernal, J. M. da S. (2009). Contribuição do aporte fluvial de sedimentos para a construção da planície deltaica do Rio Jequitinhonha - BA. Universidade Federal da Bahia.Google Scholar
  9. Brandao, I. L., de Mannaerts, C. M. S., & Saraiva, A. C. F. (2017). Seasonal variation of phytoplankton indicates small impacts of anthropic activities in a Brazilian Amazonian reserve. Ecohydrology & Hydrobiology, 17(3), 217–226. Scholar
  10. Bretherton, L., Kamalanathan, M., Genzer, J., Hillhouse, J., Setta, S., Liang, Y., Brown, C. M., Xu, C., Sweet, J., Passow, U., Finkel, Z. V., Irwin, A. J., Santschi, P. H., & Quigg, A. (2018). Response of natural phytoplankton communities exposed to crude oil and chemical dispersants during a mesocosm experiment. Aquatic Toxicology, 206, 43–53. Scholar
  11. Cao, J., Hou, Z., Li, Z., Chu, Z., Yang, P., & Zheng, B. (2018). Succession of phytoplankton functional groups and their driving factors in a subtropical plateau lake. Science of the Total Environment, 631–632, 1127–1137. Scholar
  12. Carrera-Martinez, D., Mateos-Sanz, A., Lopez-Rodas, V., & Costas, E. (2011). Adaptation of microalgae to a gradient of continuous petroleum contamination. Aquatic Toxicology, 101(2), 342–350. Scholar
  13. Chien, Y. C., Wu, S. C., Chen, W. C., & Chou, C. C. (2013). Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environmental Engineering Science, 30(4), 179–186. Scholar
  14. Costa, L. S., Huszar, V. L. M., & Ovalle, A. R. (2009). Phytoplankton functional groups in a tropical estuary: Hydrological control and nutrient limitation. Estuaries and Coasts, 32(3), 508–521. Scholar
  15. da Costa, D. F., & Dantas, Ê. W. (2012). Diversity of phytoplankton community in different urban aquatic ecosystems in metropolitan João Pessoa, state of Paraíba, Brazil. Acta Limnologica Brasiliensia, 23(4), 394–405. Scholar
  16. Devercelli, M., & O’Farrell, I. (2013). Factors affecting the structure and maintenance of phytoplankton functional groups in a nutrient rich lowland river. Limnologica, 43(2), 67–78. Scholar
  17. Dominguez, J., Andrade, A., Almeida, A., & Bittencourt, A. (2009). The Holocene barrier strandplains of the State of Bahia. In S. Dillenburg & P. Hesp (Eds.), Geology and Geomorphology of Holocene Coastal Barrier of Brazil. Lecture Notes in Earth Sciences (pp. 253–285). Berlin: Springer Verlag.CrossRefGoogle Scholar
  18. Dunck, B., Felisberto, S. A., & de Souza Nogueira, I. (2019). Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia, 837(1), 195–204. Scholar
  19. Edler, L., & Elbrächter, M. (2010). The utermöhl method for quantitative phytoplankton analysis. In B. Karlso, C. Cusack, & E. Bresnan (Eds.), Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis (pp. 13–20). Paris: Intergovernmental Oceanographic Commission of ©UNESCO.Google Scholar
  20. Feng, X., Porporato, A., & Rodriguez-Iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3(9), 811–815. Scholar
  21. Gamito, S. (2010). Caution is needed when applying Margalef diversity index. Ecological Indicators, 10(2), 550–551. Scholar
  22. Ibáñez, C., Alcaraz, C., Caiola, N., Rovira, A., Trobajo, R., Alonso, M., et al. (2012). Regime shift from phytoplankton to macrophyte dominance in a large river: top-down versus bottom-up effects. Science of the Total Environment, The, 416, 314–322. Scholar
  23. IBGE. (2010). Censo 2010. Accessed 6 February 2018
  24. INEMA. (2015). Programa Monitora: Relatório Anual de Qualidade das Águas do Estado da Bahia - Ano 2015.
  25. INEMA. (2018). Relatório de Informações Hidrológicas e Meteorológicas.
  26. Leps, J., & Smilauer, P. (2003). Multivariate Analysis of Ecological Data usingCANOCO This. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki.
  27. Lopes, O. F., Rocha, F. A., de Sousa, L. F., da Silva, D. M. L., Amorim, A. F., Gomes, R. L., da Silva Junior, A. L. S., & de Jesus, R. M. (2019). Influence of land use on trophic state indexes in northeast Brazilian river basins. Environmental Monitoring and Assessment, 191(2), 77. Scholar
  28. Lundberg, C. (2013). Eutrophication, risk management and sustainability. The perceptions of different stakeholders in the northern Baltic Sea. Marine Pollution Bulletin, 66(1–2), 143–150. Scholar
  29. MapBiomas. (2019). Coleção 3.0. Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. Accessed 10 March 2019
  30. Margalef, R. (1983). Limnología. Ediciones Omega.Google Scholar
  31. Moses, N., Umar, D., Saidu, H., Kotus, A., Lucky, D., & Angelini, P. (2016). Effect of riparian land use on phytoplankton characteristics of Kwadon Stream, Gombe State of Nigeria. Asian Journal of Biology, 1(2), 1–14. Scholar
  32. Moura, A. N., Severiano, J. S., Tavares, N., & Dantas, E. W. (2013). The role of a cascade of reservoirs and seasonal variation in the phytoplankton structure in a tropical river. Braz. J. Biol (Vol. 73). Accessed 28 September 2018
  33. Oberholster, P. J., Blaise, C., & Botha, A.-M. (2010). Phytobenthos and phytoplankton community changes upon exposure to a sunflower oil spill in a South African protected freshwater wetland. Ecotoxicology, 19(8), 1426–1439. Scholar
  34. Okogwu, O. I., & Ugwumba, A. O. (2013). Seasonal dynamics of phytoplankton in two tropical rivers of varying size and human impact in Southeast Nigeria. Rev. Biol. Trop. (Int. J. Trop. Biol. ISSN (Vol. 61).
  35. ONS. (2019). Histórico da operação - Dados hidrológicos/Vazões. Accessed 20 February 2019
  36. Padisák, J., Scheffler, W., Sípos, C., Kasprzak, P., Koschel, R., & Krienitz, L. (2003). Spatial and temporal pattern of development and decline of the spring diatom populations in Lake Stechlin in 1999. Archiv für Hydrobiologie, 58(November 2015), 135–155.Google Scholar
  37. Padisák, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia, 621(1), 1–19. Scholar
  38. Pereira, P. R. B., Diniz, H. N., Gutjahr, M. R., Menegasse, L. N., Oliveira, F. R., & Duarte, U. (2018). O ZONEAMENTO CLIMÁTICO NA BACIA DO RIO JEQUITINHONHA, ESTADO DE MINAS GERAIS, BRASIL, (November).
  39. Peresin, D., Torgan, L. C., Schulz, U. H., & Crossetti, L. O. (2014). Structure of potamoplankton along a gradient of preservation of riparian vegetation in subtropical streams. Anais da Academia Brasileira de Ciências, 86(2), 841–853. Scholar
  40. Pérez Hernández, D., & López, J. L. (1998). Alguno aspectos relevantes de la hidrología del Río Orinoco. In El Río Orinoco (pp. 138–154).Google Scholar
  41. Reynolds, C. S. (2006). The ecology of phytoplankton. The Ecology of Phytoplankton.
  42. Reynolds, C. S., & Descy, J.-P. (1996). The production, biomass and structure of phytoplankton in large rivers. River Systems. Scholar
  43. Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Review towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24(5), 417–428. Scholar
  44. Rodrigues, V., Estrany, J., Ranzini, M., de Cicco, V., Martín-Benito, J. M. T. M. T., Hedo, J., & Lucas-Borja, M. E. (2017). Effects of land use and seasonality on stream water quality in a small tropical catchment: The headwater of Córrego Água Limpa, São Paulo (Brazil). Science of the Total Environment, 622–623, 1553–1561. Scholar
  45. Santana, L. M., Moraes, M. E. B., Silva, D. M. L., & Ferragut, C. (2016). Spatial and temporal variation of phytoplankton in a tropical eutrophic river. Brazilian Journal of Biology, 76(3), 600–610. Scholar
  46. Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana, IL, USA: University of Illinois Press.Google Scholar
  47. Silva, V. de A. (2012). Geomorfologia antropogênica: Mudanças no padrão de drenagem do canal principal e delta, no baixo curso do Rio Jequitinhonha/BA. Universidade Estadual de Campinas.Google Scholar
  48. Sin, Y., Wetzel, R. L., & Anderson, I. C. (1999). Spatial and temporal characteristics of nutrient and phytoplankton dynamics in the York River Estuary, Virginia: Analyses of Long-Term Data. Estuaries, 22(2), 260. Scholar
  49. Singh, P., Haritashya, U. K., & Kumar, N. (2004). Seasonal changes in meltwater storage and drainage characteristics of the Dokriani Glacier, Garhwal Himalayas (India). Hyrology Research, 35(1), 15–29.CrossRefGoogle Scholar
  50. Tundisi, G., & Matsumura, T. (2011). Limnology.Google Scholar
  51. Tundisi, J. G., Matsumura-Tundisi, T., & Abe, D. S. (2007). Climate monitoring before and during limnological studies: a needed integration. Brazilian journal of biology = Revista brasleira de biologia, 67(4), 795–796. Scholar
  52. Tyokumbur, E. T., & Okorie, T. (2013). Studies on the distribution and abundance of plankton in Awba stream and reservoir, University of Ibadan. Open Journal of Ecology, 03(04), 273–278. Scholar
  53. Uehlinger, V. (1964). Etude statistique des méthodes de dénombrement planctonique. impr. A. Kundig. = E6rLygAACAAJ
  54. Utermöhl, H. (1958). Zur Vervollkommnung der quantitativen Phytoplankton Methodik. Stuttgart, Germany: Schweizerbart Science Publishers Scholar
  55. Veracel Celulose S. A. (2013). Relatório de Sustentabilidade Veracel Celulose 2012. Belmonte.
  56. Wehr, J., Sheath, R., & Kociolek, P. (2015). Freshwater Algae of North America: Ecology and Classification.Google Scholar
  57. Yang, J. R., Lv, H., Isabwe, A., Liu, L., Yu, X., Chen, H., & Yang, J. R. (2017). Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 120, 52–63. Scholar
  58. Zhang, Y., Shi, K., Liu, J., Deng, J., Qin, B., Zhu, G., & Zhou, Y. (2016). Meteorological and hydrological conditions driving the formation and disappearance of black blooms, an ecological disaster phenomena of eutrophication and algal blooms. Science of the Total Environment, 569–570, 1517–1529. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto de Biologia, Laboratório de Plâncton (LABPLAN)Universidade Federal da BahiaSalvadorBrazil
  2. 2.Instituto de Biologia, Laboratório de Paleoecologia (EcoPaleo)Universidade Federal da BahiaSalvadorBrazil

Personalised recommendations