Skip to main content

Advertisement

Log in

Sensitivity thresholds of groundwater parameters for detecting CO2 leakage at a geologic carbon sequestration site

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Geologic carbon sequestration (GCS) projects in the USA are required to monitor groundwater quality for geochemical changes above the injection area that may be a result of CO2 or brine leakage from the storage reservoir. Should CO2 migrate into the groundwater around the compliance wells monitoring the shallower hydrologic units, each compliance parameter could react differently depending on its sensitivity to CO2. Statistically determined limits (SDLs) for detection of CO2 leakage into groundwater were calculated using background water quality data from the Illinois Basin Decatur Project (IBDP) sequestration site and prediction and tolerance intervals for specific compliance parameters. If the parameter concentrations varied outside of these ranges during the injection and post injection periods of a GCS project, then additional actions would be required to determine the reason for the changes in groundwater concentrations. Geochemical modeling can simulate the amount of CO2 needed to alter water quality parameters a statistically significant amount. This information can then inform GCS operators and regulators as to which compliance parameters are relevant (sensitive) to CO2 leakage for a given setting. For the system studied in here, Fe, Ca, K, Mg, CO2, and pH were sensitive to CO2 addition while Al, Cl, Na, and Si were not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Apps, J. A., Zheng, L., Spycher, N., Birkholzer, J. T., Kharaka, Y., Thordsen, J., et al. (2011). Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment. Energy Procedia, 4, 3231–3238. https://doi.org/10.1016/j.egypro.2011.02.241.

    Article  CAS  Google Scholar 

  • Azzolina, N. A., Small, M. J., Nakles, D. V., & Bromhal, G. S. (2014). Effectiveness of subsurface pressure monitoring for brine leakage detection in an uncertain CO2 sequestration system. Stochastic Environmental Research and Risk Assessment, 28(4), 895–909. https://doi.org/10.1007/s00477-013-0788-9.

    Article  Google Scholar 

  • Bethke, C. M. (2007). Geochemical and Biogeochemical Reaction Modeling. Cambridge University Press. doi:https://doi.org/10.1017/cbo9780511619670

  • Bie, H., Yang, C., & Liu, P. (2019). Probabilistic evaluation of above-zone pressure and geochemical monitoring for leakage detection at geological carbon sequestration site. Computers & Geosciences, 125, 1–8. https://doi.org/10.1016/j.cageo.2019.01.008.

    Article  CAS  Google Scholar 

  • Cahill, A. G., & Jakobsen, R. (2015). Geochemical modeling of a sustained shallow aquifer CO 2 leakage field study and implications for leakage and site monitoring. International Journal of Greenhouse Gas Control, 37, 127–141. https://doi.org/10.1016/j.ijggc.2015.03.011.

    Article  CAS  Google Scholar 

  • Carroll, S., Hao, Y., & Aines, R. (2009). Geochemical detection of carbon dioxide in dilute aquifers. Geochemical Transactions, 10(1), 4. https://doi.org/10.1186/1467-4866-10-4.

    Article  CAS  Google Scholar 

  • Chae, G., Yu, S., Jo, M., Choi, B.-Y., Kim, T., Koh, D.-C., Yun, Y. Y., Yun, S. T., & Kim, J. C. (2016). Monitoring of CO2-rich waters with low pH and low EC: an analogue study of CO2 leakage into shallow aquifers. Environmental Earth Sciences, 75(5), 390–315. https://doi.org/10.1007/s12665-015-5206-9.

    Article  CAS  Google Scholar 

  • Choi, B.-Y. (2019). Potential impact of leaking CO2 gas and CO2-rich fluids on shallow groundwater quality in the Chungcheong region (South Korea): A hydrogeochemical approach. International Journal of Greenhouse Gas Control, 84, 13–28. https://doi.org/10.1016/j.ijggc.2019.03.010.

    Article  CAS  Google Scholar 

  • Dai, Z., Keating, E., Bacon, D., Viswanathan, H., Stauffer, P., Jordan, A., & Pawar, R. (2015). Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site. Scientific Reports, 4(1), 4006. https://doi.org/10.1038/srep04006.

    Article  CAS  Google Scholar 

  • Duan, Z., Møller, N., & Weare, J. H. (1996). A general equation of state for supercritical fluid mixtures and molecular dynamics simulation of mixture PVTX properties. Geochimica et Cosmochimica Acta, 60(7), 1209–1216. https://doi.org/10.1016/0016-7037(96)00004-X.

    Article  CAS  Google Scholar 

  • EPA, U. S. (1993). Method 300.0 Determination of inorganic anions by ion chromatography (No. EPA 530/R-09-007). Cincinnati, Oh.

  • EPA, U. S. (2009). Statistical analysis of groundwater monitoring data at RCRA facilities: unified guidance (No. EPA-530/R-09-007). Washington D.C.

  • Flaathen, T. K., Gislason, S. R., Oelkers, E. H., & Sveinbjörnsdóttir, Á. E. (2009). Chemical evolution of the Mt. Hekla, Iceland, groundwaters: A natural analogue for CO2 sequestration in basaltic rocks. Applied Geochemistry, 24(3), 463–474. https://doi.org/10.1016/j.apgeochem.2008.12.031.

    Article  CAS  Google Scholar 

  • Humez, P., Négrel, P., Lagneau, V., Lions, J., Kloppmann, W., Gal, F., et al. (2014). CO2–water–mineral reactions during CO2 leakage: Geochemical and isotopic monitoring of a CO2 injection field test. Chemical Geology, 368, 11–30. https://doi.org/10.1016/j.chemgeo.2014.01.001.

    Article  CAS  Google Scholar 

  • IPCC. (2005). Carbon dioxide capture and storage. (L. M. Bert Metz, Ogunlade Davidson Hellen de Coninck, Manuela Loos, Ed.). Cambridge University Press.

  • Karamalidis, A. K., Torres, S. G., Hakala, J. A., Shao, H., Cantrell, K. J., & Carroll, S. (2013). Trace metal source terms in carbon sequestration environments. Environmental Science & Technology, 47(1), 322–329. https://doi.org/10.1021/es304832m.

    Article  CAS  Google Scholar 

  • Keating, E. H., Fessenden, J., Kanjorski, N., Koning, D. J., & Pawar, R. (2010). The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environmental Earth Sciences, 60(3), 521–536. https://doi.org/10.1007/s12665-009-0192-4.

    Article  CAS  Google Scholar 

  • Last, G. V., Murray, C. J., & Bott, Y. (2016). Derivation of groundwater threshold values for analysis of impacts predicted at potential carbon sequestration sites. International Journal of Greenhouse Gas Control, 49, 138–148. https://doi.org/10.1016/j.ijggc.2016.03.004.

    Article  Google Scholar 

  • Lawter, A., Qafoku, N. P., Wang, G., Shao, H., & Brown, C. F. (2016). Evaluating impacts of CO2 intrusion into an unconsolidated aquifer: I. Experimental data. International Journal of Greenhouse Gas Control, 44, 323–333. https://doi.org/10.1016/j.ijggc.2015.07.009.

    Article  CAS  Google Scholar 

  • Locke II, R. A., Krapac, I. G., Lewicki, J. L., & Curtis-Robinson, E. (2011). Characterizing near-surface CO2 conditions before injection–Perspectives from a CCS project in the Illinois Basin, USA. Energy Procedia, 4, 3306–3313. https://doi.org/10.1016/j.egypro.2011.02.251.

    Article  Google Scholar 

  • Locke, R. A., Greenberg, S. E., Jagucki, P., Krapac, I. G., & Shao, H. (2017). Regulatory uncertainty and its effects on monitoring activities of a major demonstration project: the Illinois basin – Decatur Project Case. Energy Procedia, 114, 5570–5579. https://doi.org/10.1016/j.egypro.2017.03.1697.

    Article  CAS  Google Scholar 

  • Lu, J., Partin, J. W., Hovorka, S. D., & Wong, C. (2010). Potential risks to freshwater resources as a result of leakage from CO2 geological storage: a batch-reaction experiment. Environmental Earth Sciences, 60(2), 335–348. https://doi.org/10.1007/s12665-009-0382-0.

    Article  CAS  Google Scholar 

  • T.D. Martin C.A. Brockhoff, J.T. Creed, E. M. W. G (1994). Method 200.7: determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry. Cincinnati, Oh.

  • Montes-Hernandez, G., Renard, F., & Lafay, R. (2013). Experimental assessment of CO 2 -mineral-toxic ion interactions in a simplified freshwater aquifer: implications for CO 2 leakage from deep geological storage. Environmental Science & Technology, 47(12), 6247–6253. https://doi.org/10.1021/es3053448.

    Article  CAS  Google Scholar 

  • NETL. (2015). Carbon sequestration Atlas of the United States and Canada (5th ed.). NETL.

  • Palandri, J. L., & Kharaka, Y. K. (2004). A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling. {US} Geological Survey. doi:https://doi.org/10.3133/ofr20041068

  • Puls, R. W., Barcelona, M. J. (1996). Low-flow (minimal drawdown) ground-water sampling procedures (No. EPA-540/S-95/504).

  • Rillard, J., Gombert, P., Toulhoat, P., & Zuddas, P. (2014). Geochemical assessment of CO2 perturbation in a shallow aquifer evaluated by a push–pull field experiment. International Journal of Greenhouse Gas Control, 21, 23–32. https://doi.org/10.1016/j.ijggc.2013.11.019.

    Article  CAS  Google Scholar 

  • Sanitas. (2016). Sanitas Technologies. http://www.sanitastech.com

  • Sun, A. Y., Nicot, J.-P., & Zhang, X. (2013a). Optimal design of pressure-based, leakage detection monitoring networks for geologic carbon sequestration repositories. International Journal of Greenhouse Gas Control, 19, 251–261. https://doi.org/10.1016/j.ijggc.2013.09.005.

    Article  CAS  Google Scholar 

  • Sun, A. Y., Zeidouni, M., Nicot, J.-P., Lu, Z., & Zhang, D. (2013b). Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method. Advances in Water Resources, 56, 49–60. https://doi.org/10.1016/j.advwatres.2012.11.017.

    Article  CAS  Google Scholar 

  • Trainor-Guitton, W., Mansoor, K., Sun, Y., & Carroll, S. (2016). Merits of pressure and geochemical data as indicators of CO2/brine leakage into a heterogeneous, sedimentary aquifer. International Journal of Greenhouse Gas Control, 52, 237–249. https://doi.org/10.1016/j.ijggc.2016.07.002.

    Article  CAS  Google Scholar 

  • Wilkin, R. T., & DiGiulio, D. C. (2010). Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling. Environmental Science & Technology, 44(12), 4821–4827. https://doi.org/10.1021/es100559j.

    Article  CAS  Google Scholar 

  • Wolery, T. J. (1992). EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3. Livermore, CA (United States). doi:10.2172/138643

  • Yang, C., Hovorka, S. D., Young, M. H., & Trevino, R. (2014). Geochemical sensitivity to CO 2 leakage: detection in potable aquifers at carbon sequestration sites. Greenhouse Gases: Science and Technology, 4(3), 384–399. https://doi.org/10.1002/ghg.1406.

    Article  CAS  Google Scholar 

  • Yang, C., Hovorka, S. D., Treviño, R. H., & Delgado-Alonso, J. (2015). Integrated framework for assessing impacts of CO 2 leakage on groundwater quality and monitoring-network efficiency: case study at a CO 2 enhanced oil recovery site. Environmental Science & Technology, 49(14), 8887–8898. https://doi.org/10.1021/acs.est.5b01574.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Randy Locke and Ivan Krapac for their feedback in preparing this work.

Funding

This project is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL), under agreement DE-FE0031626.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Berger.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, P.M., Wimmer, B. & Iranmanesh, A. Sensitivity thresholds of groundwater parameters for detecting CO2 leakage at a geologic carbon sequestration site. Environ Monit Assess 191, 685 (2019). https://doi.org/10.1007/s10661-019-7880-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-019-7880-7

Keywords

Navigation