Advertisement

The nature and way of root adaptation of juvenile woody plants Sorbus and Pyrus to drought

  • Viera PaganováEmail author
  • Zuzana Jureková
  • Helena Lichtnerová
Article
  • 48 Downloads

Abstract

The functional root traits of Pyrus pyraster (L.) Burgsd. and Sorbus domestica L. during early growth stages were evaluated. The aim of the study was to identify the functional traits of root systems that determine the adaptability of these woody species to drought conditions. The experiment was carried out under the controlled environment of a growth chamber. The root systems were analyzed using WinRhizo software. Several functional root traits were identified, including specific root length, root surface area, root length, root volume, root-to-shoot mass ratio (R:S), fine root (ϕ ˂ 2 mm) volume, coarse root (ϕ > 2 mm) volume, and fine-to-coarse root volume ratio (F/C). In drought, P. pyraster maintained the absorptive root surface unchanged, when increased the volume of the fine root fraction. The different strategy of adaptation to drought has been confirmed for S. domestica, which accumulated more dry mass in the root system in comparison to aboveground organs (significant increase of R:S ratio). The functional root traits analyzed here were species-dependent. The key functional traits that indicate the responses of studied tree taxa to drought conditions include root thickening, F/C, and R:S. Increased values of these parameters indicate the investment of the plant towards root extension. A higher proportion of fine roots increases the absorbing surface of the root system, thereby promoting water uptake from the soil.

Keywords

Root traits Growth Plant responses Trees Seedlings 

Notes

Acknowledgments

The authors are thankful to Dr. Jana Černá for her help with the laboratory analyses and to Mr. Marek Hus for his help in processing the figures.

Author contribution

VP and ZJ contributed the conception and design of the study.

HL performed data collection.

VP and HL performed statistical analyses.

ZJ wrote the first draft of the manuscript.

VP and ZJ wrote sections of the manuscript.

All authors contributed to manuscript revision and read and approved the submitted version.

Funding information

This work was supported by the AgroBioTech Research Centre (ITMS 26220220180). The research was supported by a grant from the Cultural and Educational Grant Agency of the Ministry of Education, Science, Research, and Sport of Slovak Republic (KEGA): Project registration number 003SPU-4/2017: “Development and implementation of the standards for urban greenery management.”

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Aubrecht, L., Staník, Z., & Koller, J. (2006). Electrical measurement of the absorption surfaces of tree roots by the earth impedance method: 1. Theory. Tree Physiol., 26, 1105–1112.CrossRefGoogle Scholar
  2. Augé, R. M., Moore, J. L., Cho, K., Stutz, J. C., Sylvia, D. M., Al-Agely, A. K., & Saxton, A. M. (2003). Relating foliar dehydration tolerance of mycorrhizal Phaseolus vulgaris to soil and root colonization by hyphae. Journal of Plant Physiology, 160, 1147–1156.CrossRefGoogle Scholar
  3. Bauhus, J., & Messier, C. (1999). Evaluation of fine root length and diameter measurements obtained using RHIZO image analysis. Agronomy Journal, 91, 142–147.CrossRefGoogle Scholar
  4. Brassard, B. W., Chen, H., Bergeron, Y., & Pare, D. (2011). Coarse root biomass allometric equations for Abies balsamea, Picea mariana, Pinus banksiana, and Populus tremuloides in the boreal forest of Ontario. Canada. Biomass Bioenergy., 35, 4189–4196.CrossRefGoogle Scholar
  5. Brunner, I., Herzog, C., Dawes, M., Arend, M., & Sperisen, C. H. (2015). How tree roots respond to drought. Frontiers in Plant Science, 6, 547.CrossRefGoogle Scholar
  6. Bu, W., Huang, J., Xu, H., Zang, R., Ding, Y., Li, Y., Lin, M., Wang, J., & Zhang, C. (2019). Plant functional traits are the mediators in regulating effects of abiotic site conditions on aboveground carbon stock-evidence from a 30 ha tropical forest plot. Frontiers in Plant Science, 9, 1958.  https://doi.org/10.3389/fpls.2018.01958.CrossRefGoogle Scholar
  7. Coleman, M. D., & Aubrey, D. P. (2018). Stand development and other intrinsic factors largely control fine-root dynamics with only subtle modifications from resource availability. Tree Physiology, 38, 1–15.Google Scholar
  8. Comas, L. H., Becker, S. R., Cruz, V. M., Byrne, P. F., & Dierig, D. A. (2013). Root traits contributing to plant productivity under drought. Frontiers in Plant Science, 4, 442.CrossRefGoogle Scholar
  9. Cornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchman, N., & Gurvich, D. E. (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–380.CrossRefGoogle Scholar
  10. Davies, W. J., & Bacon, M. A. (2003). Adaptation of roots to drought. In H. Kroon & E. J. W. Wisser (Eds.), Root Ecology. Ecological Studies (pp. 173–192). Heidelberg, DE: Springer.CrossRefGoogle Scholar
  11. Diaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., & Montserrat-Marti, G. (2004). The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science, 15, 295–304.CrossRefGoogle Scholar
  12. Fitter, A. (2002). Characteristics and functions of root systems. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), The hidden half (pp. 15–32). New York, NY: Marcel Dekker, Inc.CrossRefGoogle Scholar
  13. Franco, J. A., Martínez-Sánchez, J. J., Fernández, J. A., & Bañón, S. (2006). Selection and nursery production of ornamental plants for landscaping and xerogardening in semi-arid environments. The Journal of Horticultural Science and Biotechnology, 81, 3–17.CrossRefGoogle Scholar
  14. Freschet, G. T., Bellingham, P. J., Lyver, P. O. B., Bonner, K. I., & Wardle, D. A. (2013). Plasticity in above-and belowground resource acquisition traits in response to single and multiple environmental factors in three tree species. Ecology and Evolution, 3, 1065–1078.CrossRefGoogle Scholar
  15. Hajek, P., Kurjak, D., von Wühlisch, G., Delzon, S., & Schuldt, B. (2016). Intraspecific variation in wood anatomical, hydraulic, and foliar traits in ten European beech provenances differing in growth yield. Frontiers in Plant Science, 7, 791.CrossRefGoogle Scholar
  16. Hartmann, H. (2011). Will a 385 million year-struggle for light become a struggle for water and for carbon? – how trees may cope with more frequent climate change-type drought events. Global Change Biology, 17, 642–655.CrossRefGoogle Scholar
  17. Hodgson, J. G., Montserrat-Marti, G., Charles, M., Jones, G., Wilson, P., & Shipley, B. (2011). Is leaf dry matter content a better predictor of soil fertility than specific leaf area? Annals of Botany, 108, 1337–1345.CrossRefGoogle Scholar
  18. Hrdoušek, V., Krška, B., Spíšek, Z., Bakay, L., & Šedivá, J. (2014). Oskeruše, strom pro novou Evropu (The service tree, a tree for a new Europe). Hodonín, C. Z.: Brázda.Google Scholar
  19. Kausch, W. (2000). Der Speierling. Bovenden, DE: Eigenverlag.Google Scholar
  20. Kozlowski, T. T., & Pallardy, S. G. (2002). Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review, 68, 270–334.CrossRefGoogle Scholar
  21. Kunz, J., Räder, A., & Bauhus, J. (2016). Effects of drought and rewetting on growth and gas exchange of minor European broadleaved tree species. Forests, 7(10), 239.CrossRefGoogle Scholar
  22. Lapin, M., Faško, P., Melo, M., Štastný, P., & Tomlain, J. (2002). Klimatické oblasti. In Atlas Krajiny Slovenskej Republiky, Bratislava, SVK: Ministerstvo životného prostredia SR, Banská Bystrica (p. 344). SVK: SAŽP.Google Scholar
  23. Májovský, J. (1992). Sorbus L. emend. Crantz. In L. Bertová (Ed.), Flora of Slovakia (pp. 405–408). Bratislava, SVK: Veda.Google Scholar
  24. Manes, F., Vitale, M., Donato, E., Giannini, M., & Puppi, G. (2006). Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetics., 44, 387–393.CrossRefGoogle Scholar
  25. Markestejin, L., & Poorter, L. (2009). Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought-and shade-tolerance. Journal of Ecology, 97, 311–325.CrossRefGoogle Scholar
  26. Masarovičová, H., Májeková, M., & Vykouková, I. (2015). Funkčné znaky a plasticita rastlín. Bratislava, SVK: Univerzita Komenského.Google Scholar
  27. Meier, I. C., & Leuschner, C. H. (2007). Genotypic variation and phenotypic plasticity in the drought response to fine roots of European beech. Tree Physiology, 28, 297–309.CrossRefGoogle Scholar
  28. Milner, E. (2011). Trees of Britain and Ireland. London, UK: Natural History Museum.Google Scholar
  29. Modrzyński, J., Chmura, D. J., & Tjolker, M. G. (2015). Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Tree Physiology, 35, 879–893.CrossRefGoogle Scholar
  30. Mokany, K., Raison, R. J., & Prokushkin, A. S. (2006). Critical analysis of root:shoot ratios in terrestrial biomes. Global Change Biology, 12, 84–96.CrossRefGoogle Scholar
  31. Moura, J. C. M. S., Bonine, C. A. V., De Oliveira, F. V. J., Dornelas, M. C., & Mazafera, P. (2010). Abiotic and biotic stresses and changes in the lignin content and composition in plants. Journal of Integrative Plant Biology, 52, 360–376.CrossRefGoogle Scholar
  32. Nardini, A., Salleo, S., & Tyree, M. T. (2002). Ecological aspects of water permeability of roots. In Y. Waisel, A. Eshel, & U. Kafkafi (Eds.), The hidden half (pp. 683–698). New York, NY: Marcel Dekker, Inc..Google Scholar
  33. Olmo, M., Lopez-Inglesias, B., & Villar, R. (2014). Drought changes the structure and elemental composition of very fine roots in seedlings of the woody tree species. Implication for a drier climate. Plant and Soil, 384, 113–129.CrossRefGoogle Scholar
  34. Ostonen, I., Püttstep, U., Biel, C., Alberton, O., Bakker, M. R., Löhmus, H., Majdi, D., Metcalfe, D., Olsthoorn, A. F. M., Pronk, A., Vanguelova, E., Weih, M., & Brunner, I. (2007). Specific root length as an indicator of environmental changes. Plant Biosyst., 141, 3426–3442.CrossRefGoogle Scholar
  35. Paganová, V., & Jureková, Z. (2011). Adaptability of woody plants in aridic conditions. In A. Irmak (Ed.), Evapotranspiration - remote sensing and modeling (pp. 493–514). Rijeka, CRO: InTechOpen.Google Scholar
  36. Paganová, V., & Jureková, Z. (2012). Woody plants in landscape planning and landscape design. In M. Ozyavuz (Ed.), Landscape planning (pp. 199–216). Rijeka, CRO: IntechOpen.Google Scholar
  37. Paganová, V., & Jureková, Z. (2014). Metodika hodnotenia koreňového systému drevín v juvenilnej fáze rastu softvérom WinRhizo = Methodology of the root system assessment of woody plants using software WinRhizo. In F. Hnilička (Ed.), Vliv abiotických a biotických stresorů na vlastnosti rostlin (pp. 110–115). Praha, CZ: Česká Zemědělská Univerzita.Google Scholar
  38. Paganová, V., & Jureková, Z. (2017). Plasticita koreňov juvenilných drevín v podmienkach sucha = Plasticity of root system of the juvenile woody plants under conditions of drought. In F. Hnilička (Ed.), Vliv abiotických a biotických stresorů na vlastnosti rostlin (pp. 12–18). Praha, CZ: Česká zemědělská univerzita.Google Scholar
  39. Petruzzellis, F., Palandrani, C., Savi, T., Alberti, R., Nardini, A., & Bacaro, G. (2017). Sampling intraspecific variability in leaf functional traits: practical suggestions to maximize collected information. Ecology and Evolution, 7, 11236–11245.CrossRefGoogle Scholar
  40. Poorter, H., Bühler, J., van Dusschoten, D., Climent, J., & Postma, J. A. (2012). Pot size matters: a meta-analysis of the effects of rooting volume on plant growth. Functional Plant Biology, 39(11), 839–850.CrossRefGoogle Scholar
  41. Pretzsch, H., Biber, P., Uhl, E., & Hense, P. (2012). Coarse root-shoot allometry of Pinus radiata modified by site conditions in the Western Cape province of South Africa, Southern Forests. Journal of Forest Science, 74, 237–246.Google Scholar
  42. Rühr, N. K., Offermann, C. A., Gessler, A., Winkler, J. B., Ferrio, J. P., & Buchmann, N. (2009). Drought effects on allocation to recent carbon: from beach leaves to soil CO2 efflux. The New Phytologist, 184, 950–961.CrossRefGoogle Scholar
  43. Ryser, P., & Lambers, H. (1995). Root and leaf attributes accounting for the performance of fast- and slow-growing grasses at different nutrient supply. Plant and Soil, 170, 251–265.CrossRefGoogle Scholar
  44. Steudle, E. (2000). Water uptake by plant roots: an integration of views. Plant and Soil, 226, 45–56.CrossRefGoogle Scholar
  45. Středa, T., Klimešová, J., & Středová, H. (2014). Úskalí měrení a hodnocení vybraných faktorů tvorby výnosu polních plodin. In L. Bláha & B. Šerá (Eds.), Contribution to agricultural experimentation (pp. 101–134). Praha-České Budějovice, CZ: Powerprint.Google Scholar
  46. Sultan, S. E., & Bazzaz, F. A. (1993). Phenotypic plasticity in Polygonum persicaria. II. Norms of reaction to soil moisture and the maintenance of genetic diversity. Evolution, 47, 1032–1049.CrossRefGoogle Scholar
  47. Tachibana, Y., & Ohta, Y. (2012). Root surface area, as a parameter in relation to water and nutrient uptake by cucumber plant. Soil Science & Plant Nutrition, 29, 387–392.CrossRefGoogle Scholar
  48. Trautmann, N., & Richard, T. (1996). Moisture content. In Cornell Waste Management Institute Available at http://compost.css.cornell.edu/calc/moisture_content.html.Google Scholar
  49. Vandeleur, R. K., Mayo, G., Selden, M. C., Gillham, M., Kaiser, B. N., & Tyerman, S. D. (2009). The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine. Plant Physiology, 149, 445–460.CrossRefGoogle Scholar
  50. Verslues, P. E., Agarwal, M., Katiyar-Agarwal, S., Zhu, J., & Zhu, J. K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing abiotic stresses that affect plant water status. The Plant Journal, 45, 523–539.CrossRefGoogle Scholar
  51. Violle, C., Navas, M. L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., & Garnier, E. (2007). Let the concept of trait be functional! Oikos, 116, 882–892.CrossRefGoogle Scholar
  52. Westoby, M., & Wright, I. J. (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261–268.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Planting Design and MaintenanceSlovak University of AgricultureNitraSlovakia
  2. 2.Department of Regional BioenergySlovak University of AgricultureNitraSlovakia

Personalised recommendations