Responses of plant productivity and soil nutrient concentrations to different alpine grassland degradation levels

  • Hai Peng Xu
  • Jing Zhang
  • Xiao Pan Pang
  • Qian Wang
  • Wen Na Zhang
  • Juan Wang
  • Zheng Gang GuoEmail author


Although grassland degradation simultaneously affects plant productivity and soil nutrient concentrations, the relationship between plant productivity and soil nutrient concentrations during the process of grassland degradation is not yet well documented. A 4-year survey in the Qinghai-Tibetan Plateau was conducted to simultaneously investigate the relationships between plant productivity and soil nutrient concentrations in an alpine grassland at an overall degradation level and individual degradation levels. Our results showed that the total plant, sedge, and forb biomasses decreased, whereas the grass and legume biomasses first increased and then decreased as the level of alpine grassland degradation increased. Soil organic carbon (C), total nitrogen (N), total phosphorus (P), available N, and available P concentrations also decreased with the increase in degradation level. Our results also showed that plant productivity was positively correlated with soil nutrient concentrations (soil organic C, total T, total P, available N, available P) at an overall degradation level, whereas plant productivity was positively correlated with only the soil organic C concentration at each degradation level. Our findings suggested that the alpine grassland degradation conditions had different effects on the plant productivity of four functional groups (sedges, grasses, legumes, forbs) and affected the relationship between plant productivity and soil nutrient concentrations.


Total plant biomass Functional group biomass Soil nutrient concentrations Degradation level Alpine grassland 


Funding information

This work was financially supported by the Major special project for improvement and utilization of forage germplasm in Tibetan Autonomous Region (XZ201901NA03), the Changjiang Scholars and Innovative Research Team in University (IRT17R50), and the National Key Research and Development Plan (2016YFC0502005).


  1. Abdalla, K., Mutema, M., Chivenge, P., Everson, C., & Chaplot, V. (2018). Grassland degradation significantly enhances soil CO2 emission. Catena, 167, 284–292.CrossRefGoogle Scholar
  2. Alcántara, J. M., Rey, P. J., Sánchez-Lafuente, A. M., & Valera, F. (2000). Early effects of rodent post-dispersal seed predation on the outcome of the plant-seed disperser interaction. Oikos, 88, 362–370.CrossRefGoogle Scholar
  3. Alhassan, A. R. M., Ma, W., Li, G., Jiang, Z., Wu, J., & Chen, G. (2018). Response of soil organic carbon to vegetation degradation along a moisture gradient in a wet meadow on the Qinghai - Tibet Plateau. Ecology and Evolution, 8, 11999–12010.CrossRefGoogle Scholar
  4. Bao, S. D. (2000). Soil chemical anlysis of agriculture. Beijing: Chinese Agriculture Press [in chinese].Google Scholar
  5. Briones, M. J. I., Ostle, N. J., McNamara, N. P., & Poskitt, J. (2009). Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 41, 315–322.CrossRefGoogle Scholar
  6. Bueno, C. G., Azorín, J., Gómez-García, D., Alados, C. L., & Badía, D. (2013). Occurrence and intensity of wild boar disturbances, effects on the physical and chemical soil properties of alpine grasslands. Plant and Soil, 373, 243–256.CrossRefGoogle Scholar
  7. Cheng, X., An, S., Chen, J., Li, B., Liu, Y., & Liu, S. (2007). Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordos Plateau, northwestern China. Journal of Arid Environments, 68, 652–667.CrossRefGoogle Scholar
  8. De Deyn, G. B., Cornelissen, J. H., & Bardgett, R. D. (2008). Plant functional traits and soil carbon sequestration in contrasting biomes. Ecology Letters, 11, 516–531.CrossRefGoogle Scholar
  9. Dong, S. K., Wen, L., Li, Y. Y., Wang, X. X., Zhu, L., & Li, X. Y. (2012). Soil-quality effects of grassland degradation and restoration on the Qinghai-Tibetan Plateau. Soil Science Society of America Journal, 76, 2256–2264.CrossRefGoogle Scholar
  10. Dong, Q. M., Zhao, X. Q., Wu, G. L., Shi, J. J., & Ren, G. H. (2013). A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences, 70, 2359–2370.CrossRefGoogle Scholar
  11. Dong, C., Wang, W., Liu, H., Xu, X., & Zeng, H. (2019). Temperate grassland shifted from nitrogen to phosphorus limitation induced by degradation and nitrogen deposition: evidence from soil extracellular enzyme stoichiometry. Ecological Indicators, 101, 453–464.CrossRefGoogle Scholar
  12. Harris, R. B. (2010). Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. Journal of Arid Environments, 74, 1–12.CrossRefGoogle Scholar
  13. He, S., & Richards, K. (2015). Impact of meadow degradation on soil water status and pasture management - a case study in Tibet. Land Degradation & Development, 26, 468–479.CrossRefGoogle Scholar
  14. Kleyer, M. (2002). Validation of plant functional types across two contrasting landscapes. Journal of Vegetation Science, 13, 167–178.CrossRefGoogle Scholar
  15. Lauenroth, W. K. (1979). Grassland primary production: North American grasslands in perspective. In N. R. French (Ed.), Perspectives in grassland ecology (pp. 3–24). New York: Springer.CrossRefGoogle Scholar
  16. Lavorel, S., & Garnier, É. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545–556.CrossRefGoogle Scholar
  17. Li, L., & Liu, W. (2011). Relationship between plant functional groups, species richness and community’s productivity in degraded grassland. Acta Agrestia Sinica, 19(6), 917–921 [in chinese].Google Scholar
  18. Li, X. R., Jia, X. H., & Dong, G. R. (2006). Influence of desertification on vegetation pattern variations in the cold semi-arid grasslands of Qinghai - Tibet Plateau, North-west China. Journal of Arid Environments, 64, 505–522.CrossRefGoogle Scholar
  19. Li, F. R., Zhao, W. Z., Liu, J. L., & Huang, Z. G. (2009). Degraded vegetation and wind erosion influence soil carbon, nitrogen and phosphorus accumulation in sandy grasslands. Plant and Soil, 317, 79–92.CrossRefGoogle Scholar
  20. Li, Y. Y., Dong, S. K., Wen, L., Wang, X. X., & Wu, Y. (2014). Soil carbon and nitrogen pools and their relationship to plant and soil dynamics of degraded and artificially restored grasslands of the Qinghai - Tibetan Plateau. Geoderma, 213, 178–184.CrossRefGoogle Scholar
  21. Li, J., Zhang, F., Lin, L., Li, H., Du, Y., Li, Y., & Cao, G. (2015). Response of the plant community and soil water status to alpine Kobresia meadow degradation gradients on the Qinghai-Tibetan Plateau, China. Ecological Research, 30, 589–596.CrossRefGoogle Scholar
  22. Li, Y., Wang, S., Jiang, L., Zhang, L., Cui, S., Meng, F., et al. (2016). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213–222.CrossRefGoogle Scholar
  23. Li, W., Wang, J., Zhang, X., Shi, S., & Cao, W. (2018). Effect of degradation and rebuilding of artificial grasslands on soil respiration and carbon and nitrogen pools on an alpine meadow of the Qinghai - Tibetan Plateau. Ecological Engineering, 111, 134–142.CrossRefGoogle Scholar
  24. Liu, W., Zhou, H. K., & Zhou, L. (2005). Biomass distribution pattern of degraded grassland in alpine meadow. Grassland of China, 27(2), 9–15 [in chinese].Google Scholar
  25. Liu, Y., Dang, Z. Q., Tian, F. P., Wang, D., & Wu, G. L. (2017a). Soil organic carbon and inorganic carbon accumulation along a 30-year grassland restoration chronosequence in semi-arid regions (China). Land Degradation & Development, 28(1), 189–198.CrossRefGoogle Scholar
  26. Liu, Y., Wu, G. L., Ding, L. M., Tian, F. P., & Shi, Z. H. (2017b). Diversity–productivity trade-off during converting cropland to perennial grassland in the semi-arid areas of China. Land Degradation & Development, 28(2), 699–707.CrossRefGoogle Scholar
  27. Liu, S., Zamanian, K., Schleuss, P. M., Zarebanadkouki, M., & Kuzyakov, Y. (2018). Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agriculture, Ecosystems & Environment, 252, 93–104.CrossRefGoogle Scholar
  28. Liu, Y., Yang, Y., Wang, Q., Du, X., Li, J., Gang, C., Zhou, W., & Wang, Z. (2019). Evaluating the responses of net primary productivity and carbon use efficiency of global grassland to climate variability along an aridity gradient. Science of the Total Environment, 652, 671–682.CrossRefGoogle Scholar
  29. Luo, Y. Y., Meng, Q. T., Zhang, J. H., Zhao, X. Y., & Qin, Y. (2014). Species diversity and biomass in relation to soil properties of alpine meadows in the eastern Tibetan Plateau in different degradation stages. Journal of Glaciology and Geocryology, 36(5), 1298–1305 [in chinese].Google Scholar
  30. Luo, J., Liu, X., Yang, J., Liu, Y., & Zhou, J. (2018). Variation in plant functional groups indicates land degradation on the Tibetan Plateau. Scientific Reports, 8, 17606.CrossRefGoogle Scholar
  31. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis. Part 3: Chemical methods (pp. 961–1010). Madison: Soil Science Society of America, Inc., American Society of Agronomy, Inc..Google Scholar
  32. Pan, W., Song, Z., Liu, H., Müeller, K., Yang, X., Zhang, X., et al. (2017). Impact of grassland degradation on soil phytolith carbon sequestration in Inner Mongolian steppe of China. Geoderma, 308, 86–92.CrossRefGoogle Scholar
  33. Pando-Moreno, M., Jurado, E., Manzano, M., & Estrada, E. (2004). The influence of land use on desertification processes. Journal of Range Management, 57, 320–324.CrossRefGoogle Scholar
  34. Pang, X. P., & Guo, Z. G. (2017). Plateau pika disturbances alter plant productivity and soil nutrients in alpine meadows of the Qinghai-Tibetan Plateau, China. The Rangeland Journal, 39, 133–144.CrossRefGoogle Scholar
  35. Peng, F., Quangang, Y., Xue, X., Guo, J., & Wang, T. (2015). Effects of rodent-induced land degradation on ecosystem carbon fluxes in an alpine meadow in the Qinghai - Tibet plateau, China. Solid Earth, 6, 303–310.CrossRefGoogle Scholar
  36. Peng, F., Xue, X., You, Q., Huang, C., Dong, S., Liao, J., et al. (2018). Changes of soil properties regulate the soil organic carbon loss with grassland degradation on the Qinghai-Tibet Plateau. Ecological Indicators, 93, 572–580.CrossRefGoogle Scholar
  37. Potthoff, M., Jackson, L. E., Steenwerth, K. L., Ramirez, I., Stromberg, M. R., & Rolston, D. E. (2005). Soil biological and chemical properties in restored perennial grassland in California. Restoration Ecology, 13(1), 61–73.CrossRefGoogle Scholar
  38. Ren, G., Shang, Z., Long, R., Hou, Y., & Deng, B. (2013). The relationship of vegetation and soil differentiation during the formation of black-soil-type degraded meadows in the headwater of the Qinghai - Tibetan Plateau, China. Environmental Earth Sciences, 69, 235–245.CrossRefGoogle Scholar
  39. Robertson, G. P., Hutson, M. A., Evans, F. C., & Tiedje, J. M. (1988). Spatial variability in a successional plant community: patterns of nitrogen availability. Ecology, 69(5), 1517–1524.CrossRefGoogle Scholar
  40. Rogers, W. E., & Hartnett, D. C. (2001). Temporal vegetation dynamics and recolonization mechanisms on different - sized soil disturbances in tallgrass prairie. American Journal of Botany, 88(9), 1634–1642.CrossRefGoogle Scholar
  41. Silva, D. M., & Batalha, M. A. (2008). Soil - vegetation relationships in cerrados under different fire frequencies. Plant and Soil, 311, 87–96.CrossRefGoogle Scholar
  42. Spehn, E. M., Scherer-Lorenzen, M., Schmid, B., Hector, A., Caldeira, M. C., Dimitrakopoulos, P. G., et al. (2002). The role of legumes as a component of biodiversity in a cross - European study of grassland biomass nitrogen. Oikos, 98, 205–218.CrossRefGoogle Scholar
  43. Sun, D. S., Wesche, K., Chen, D. D., Zhang, S. H., Wu, G. L., Du, G. Z., & Comerford, N. B. (2011). Grazing depresses soil carbon storage through changing plant biomass and composition in a Tibetan alpine meadow. Plant, Soil and Environment, 57(6), 271–278.CrossRefGoogle Scholar
  44. Wang, H. (2014). A comparative study of plant community characteristics in hulunbeir grassland. Journal of Inner Mongolia Normal University (Natural Science Edition), 43(1), 72–80 [in chinese].Google Scholar
  45. Wang, H., Guo, Z. G., Xu, X. H., Liang, T. G., & Ren, J. Z. (2007). Response of vegetation and soils to desertification of alpine meadow in the upper basin of the Yellow River, China. New Zealand Journal of Agricultural Research, 50, 491–501.CrossRefGoogle Scholar
  46. Wang, C. T., Long, R. J., Wang, Q. L., Jing, Z. C., & Shi, J. J. (2009). Changes in plant diversity, biomass and soil C, in alpine meadows at different degradation stages in the headwater region of three rivers, China. Land Degradation & Development, 20, 187–198.CrossRefGoogle Scholar
  47. Wang, X., Dong, S., Yang, B., Li, Y., & Su, X. (2014). The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 186, 6903–6917.CrossRefGoogle Scholar
  48. Wen, L., Dong, S., Li, Y., Li, X., Shi, J., Wang, Y., et al. (2013). Effect of degradation intensity on grassland ecosystem services in the alpine region of Qinghai-Tibetan Plateau, China. PLoS One, 8(3), e58432.CrossRefGoogle Scholar
  49. Wu, G. L., Du, G. Z., Liu, Z. H., & Thirgood, S. (2009). Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai - Tibetan Plateau. Plant and Soil, 319, 115–126.CrossRefGoogle Scholar
  50. Wu, G. L., Ren, G. H., Dong, Q. M., Shi, J. J., & Wang, Y. L. (2014). Above - and belowground response along degradation gradient in an alpine grassland of the Qinghai - Tibetan Plateau. Clean: Soil, Air, Water, 42(3), 319–323.Google Scholar
  51. Xiao, Y., Chen, M. G., Zhou, J., & Guo, Z. Z. (2014). Plant community features of carex moorcroftii steppe at different degradation degrees in the interior of Qinghai - Tibetan Plateau. Chinese Journal of Applied & Environmental Biology, 20(4), 639–645 [in chinese].Google Scholar
  52. Xu, M., Liu, M., Xue, X., & Zhai, D. (2016). Warming effects on plant biomass allocation and correlations with the soil environment in an alpine meadow, China. Journal of Arid Land, 8(5), 773–786.CrossRefGoogle Scholar
  53. Yang, Z. A., Xiong, W., Xu, Y., Jiang, L., Zhu, E., Zhan, W., He, Y., Zhu, D., Zhu, Q., Peng, C., & Chen, H. (2016). Soil properties and species composition under different grazing intensity in an alpine meadow on the eastern Tibetan Plateau, China. Environmental Monitoring & Assessment, 188, 678. Scholar
  54. Zhou, H., Zhao, X., Tang, Y., Gu, S., & Zhou, L. (2005). Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassland Science, 51, 191–203.CrossRefGoogle Scholar
  55. Zhou, H., Zhang, D., Jiang, Z., Sun, P., Xiao, H., Yuxin, W., & Chen, J. (2019). Changes in the soil microbial communities of alpine steppe at Qinghai - Tibetan Plateau under different degradation levels. Science of the Total Environment, 651, 2281–2291.CrossRefGoogle Scholar
  56. Zuo, X., Zhao, H., Zhao, X., Guo, Y., Yun, J., Wang, S., & Miyasaka, T. (2009). Vegetation pattern variation, soil degradation and their relationship along a grassland desertification gradient in Horqin Sandy Land, Northern China. Environmental Geology, 58, 1227–1237.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Grassland Agro-Ecosystem, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agricultural Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations