Review of climate change impacts on predicted river streamflow in tropical rivers

  • Mahsa Jahandideh-TehraniEmail author
  • Hong Zhang
  • Fernanda Helfer
  • Yingying Yu


Tropical regions are characterized by hydrological extreme events, which are likely to be exacerbated by climate change. Therefore, quantifying the extent to which climate change may damage a hydrological system becomes crucial. This paper aims to evaluate the findings from previous research on projected impacts of climate change on hydrological systems located in regions bounded by the Tropic of Cancer and the Tropic of Capricorn. It intends to provide an in-depth understanding of the climatic conditions, applied approaches, climate change impacts on future streamflow, and measures to reduce prediction uncertainty in the tropics. The review revealed that there is a significant variation in the magnitude of climate change impacts on streamflow in the tropics. The reason for the inconsistent trend prediction is that projections are heavily dependent on the trajectory of greenhouse gas emissions, climate model structural differences, and uncertainty of downscaling methods and hydrological models. Therefore, to minimize the uncertainty and maximize confidence in streamflow projections, it is essential to apply multi-member model ensembles and to clarify the adaptation strategy (coping, adjusting, or transforming).


Climate change projections River discharge Model uncertainty Downscaling method Bias correction Hydrological model 


Funding Information

Funding for this project has been provided by Griffith University Postgraduate Research School through the GUPRS scholarship, and Griffith University International Postgraduate Research School through the GUIPRS scholarship.

Supplemental Data

No data, models, or code were generated or used during the study.


  1. Abbaspour, K. C., Faramarzi, M., Ghasemi, S. S., & Yang, H. (2009). Assessing the impact of climate change on water resources in Iran. Water Resources Research, 45(10), 1–16.CrossRefGoogle Scholar
  2. Abdo, K. S., Fiseha, B. M., Rientjes, T. H. M., Gieske, A. S. M., & Haile, A. T. (2009). Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin , Ethiopia. Hydrological Processes, 23(26), 3661–3669.Google Scholar
  3. Acker, J., Soebiyanto, R., Kiang, R., & Kempler, S. (2014). Use of the NASA Giovanni data system for geospatial public health research: example of weather-influenza connection. ISPRS International Journal of Geo-Information, 3(4), 1372–1386.CrossRefGoogle Scholar
  4. Adler, R. F., Gu, G., Wang, J. J., Huffman, G. J., Curtis, S., & Bolvin, D. (2008). Relationships between global precipitation and surface temperature on interannual and longer timescales (1979-2006). Journal of Geophysical Research-Atmospheres, 113(D22), 1976–2006.CrossRefGoogle Scholar
  5. Aissia, M. A., Chebana, F., Ouarda, T. B. M. J., Roy, L., Desrochers, G., Chartier, I., & Robichaud, É. (2012). Multivariate analysis of flood characteristics in a climate change context of the watershed of the Baskatong reservoir, Province of Québec, Canada. Hydrological Processes, 26(1), 130–142.CrossRefGoogle Scholar
  6. Almazroui, M., Islam, M. N., Saeed, F., & Alkhalaf, A. K. (2017). Assessing the robustness and uncertainties of projected changes in temperature and precipitation in AR5 Global Climate Models over the Arabian Peninsula. Atmospheric Research, 194, 202–213.CrossRefGoogle Scholar
  7. Amin, M. Z. M., Shaaban, A. J., Ercan, A., Ishida, K., Kavvas, M. L., Chen, Z. Q., & Jang, S. (2017). Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo. Science of the Total Environment, 575, 12–22.CrossRefGoogle Scholar
  8. Andersson, L., Wilk, J., Todd, M. C., Hughes, D. A., Earle, A., Kniveton, D., et al. (2006). Impact of climate change and development scenarios on flow patterns in the Okavango River. Journal of Hydrology, 331(1-2), 43–57.CrossRefGoogle Scholar
  9. Apurv, T., Mehrotra, R., Sharma, A., Goyal, M. K., & Dutta, S. (2015). Impact of climate change on floods in the Brahmaputra basin using CMIP5 decadal predictions. Journal of Hydrology, 527, 281–291.CrossRefGoogle Scholar
  10. Arnell, N. W. (1999). A simple water balance model for the simulation of streamflow over a large geographic domain. Journal of Hydrology, 217(3-4), 314–335.CrossRefGoogle Scholar
  11. Arnell, N. W., Hudson, D. A., & Jones, R. G. (2003). Climate change scenarios from a regional climate model : Estimating change in runoff in southern Africa. Journal of Geophysical Research-Atmospheres, 108(D16), 4519.CrossRefGoogle Scholar
  12. Ashofteh, P. S., Bozorg-Haddad, O., & Mariño, M. A. (2013). Scenario assessment of streamflow simulation and its transition probability in future periods under climate change. Water Resources Management, 27(1), 255–274.CrossRefGoogle Scholar
  13. Ashofteh, P. S., Bozorg-Haddad, O., Loáiciga, H. A., Asce, F., & Mariño, M. A. (2016). Evaluation of the impacts of climate variability and human activity on streamflow at the basin scale. Journal of Irrigation and Drainage Engineering. Scholar
  14. Asokan, S. M., & Dutta, D. (2008). Analysis of water resources in the Mahanadi River Basin, India under projected climate conditions. Hydrological Processes, 22(18), 3589–3603.CrossRefGoogle Scholar
  15. Beyene, T., Lettenmaier, D. P., & Kabat, P. (2010). Hydrologic impacts of climate change on the Nile River Basin : implications of the 2007 IPCC scenarios. Climatic Change, 100(3-4), 433–461.CrossRefGoogle Scholar
  16. Bhend, J., Watterson, I., Grose, M., Ekstrӧm, M., & Whetton, P. (2015). Climate change projection methods. In Ekstrӧm, M., Gerbing, C., Grose, M., Bhend, J., Webb, L., & Risbey, J. (Eds.), Climate change in Australia, 78-88.Google Scholar
  17. Booij, M. J., Tollenaar, D., Van Beek, E., & Kwadijk, J. C. J. (2011). Simulating impacts of climate change on river discharges in the Nile basin. Physics and Chemistry of the Earth, 36(13), 696–709.CrossRefGoogle Scholar
  18. Buytaert, W., Ce, R., & Timbe, L. (2009). Predicting climate change impacts on water resources in the tropical Andes : Effects of GCM uncertainty. Geophysical Research Letters, 36(7), 1–5.CrossRefGoogle Scholar
  19. Camici, S., Brocca, L., Melone, F., & Moramarco, T. (2014). Impact of Climate Change on Flood Frequency Using Different Climate Models and Downscaling Approaches. Journal of Hydrologic Engineering. Scholar
  20. Chen, J., Brissette, P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49(7), 4187–4205.CrossRefGoogle Scholar
  21. Dang, T. C., Cochrane, T. A., Arias, M. E., Van, P. D. T., & De Vries, T. T. (2016). Hydrological alterations from water infrastructure development in the Mekong floodplains. Hydrological Processes, 30(21), 3824–3838.CrossRefGoogle Scholar
  22. De Sales, F., & Xue, Y. (2010). Assessing the dynamic-downscaling ability over SOuth America using the intensity-scale verification technique. International Journal of Climatology, 31(8), 1205–1221.CrossRefGoogle Scholar
  23. Dessu, S. B., & Melesse, A. M. (2013). Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya / Tanzania. Hydrological Processes, 27(20), 2973–2986.Google Scholar
  24. Devi, G. K., Ganasri, B. P., & Dwarakish, G. S. (2015). A Review on Hydrological Models. Aquatic Procedia. 4(Icwrcoe), 1001-1007.Google Scholar
  25. Dezetter, A., Servat, E., Paturel, J. E., Mahé, G., & Dieulin, C. (2009). Using general circulation model outputs to assess impacts of climate change on runoff for large hydrological catchments in West Africa. Hydrological Sciences Journal, 54(1), 77–89.CrossRefGoogle Scholar
  26. Duan, J. G., Bai, Y., Dominguez, F., Rivera, E., & Meixner, T. (2017). Framework for incorporating climate change on flood magnitude and frequency analysis in the upper Santa Cruz River. Journal of Hydrology, 549, 194–207.CrossRefGoogle Scholar
  27. Duong, N., Gourbesville, P., Tue, M., & Srivatsan, V. (2016). A deterministic hydrological approach to estimate climate change impact on river flow : Vu Gia – Thu Bon catchment, Vietnam. Journal of Hydro-Environment Research, 11, 59–74.CrossRefGoogle Scholar
  28. Edelman, A., Gelding, A., Konovalov, E., McComiskie, R., Penny, A., Roberts, N., Templeman, S., et al. (2014). State of the Tropics 2014 report. Report. James Cook University, Cairns.Google Scholar
  29. Elshamy, M. E., Seierstad, I. A., & Sorteberg, A. (2009). Impacts of climate change on Blue Nile flows using bias-corrected GCM scenarios. Hydrology and Earth System Sciences, 13, 551–565.CrossRefGoogle Scholar
  30. Estrup, H., Kronvang, B., Larsen, S. E., Christian, C., Strange, T., & Koch, E. (2006). Climate-change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment, 365(1-3), 223–237.CrossRefGoogle Scholar
  31. Feng, X., Porporato, A., & Rodriguez-iturbe, I. (2013). Changes in rainfall seasonality in the tropics. Nature Climate Change, 3, 811–815.CrossRefGoogle Scholar
  32. Fowler, H. J., & Kilsby, C. G. (2007). Using regional climate model data to simulate historical and future river flows in northwest England. Climatic Change, 80(3-4), 337–367.CrossRefGoogle Scholar
  33. Gebremichael, M., & Hossain, F. (2010). Satellite rainfall applications for surface hydrology. Dordrecht: Springer.CrossRefGoogle Scholar
  34. Geiger, R. (1954). Kassifikation der klimate nach W. Köppen (Classification of climates after W. Köppen). In: Landolt-Börnstein-Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, 3, Springer: Berlin, 603–607.Google Scholar
  35. Githui, F., Gitau, W., & Bauwens, W. (2009). Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology, 29(12), 1823–1834.CrossRefGoogle Scholar
  36. Gopal, B. (2013). Future of wetlands in tropical and subtropical Asia, especially in the face of climate change. Aquatic Sciences, 75(1), 39–61.CrossRefGoogle Scholar
  37. Graham, L. P., Andréasson, J., & Carlsson, B. (2007). Assessing climate change impacts on hydrology from an ensemble of regional climate models , model scales and linking methods–a case study on the Lule River basin. Climatic Change, 81(1), 293–307.CrossRefGoogle Scholar
  38. Gu, G., Adler, R. F., Huffman, G. J., & Curtis, S. (2007). Tropical Rainfall Variability on Interannual-to-Interdecadal and Longer Time Scales Derived from the GPCP Monthly Product. Journal of Climate, 20, 4033–4046.CrossRefGoogle Scholar
  39. Helfer, F., Lemchert, C., & Zhang, H. (2012). Impacts of climate change on temperature and evaporation from a large reservoir in Australia. Journal of Hydrology, 475, 365–378.CrossRefGoogle Scholar
  40. Herawati, H. (2015). Impact of Climate Change on Streamflow in the Tropical Lowland of Kapuas River , West Borneo, Indonesia. Procedia Engineering, 125, 185–192.CrossRefGoogle Scholar
  41. Huang, S., Hattermann, F. F., Krysanova, V., & Bronstert, A. (2013). Projections of climate change impacts on river flood conditions in Germany by combining three different RCMs with a regional eco-hydrological model. Climatic Change, 116(3-4), 631–663.CrossRefGoogle Scholar
  42. IPCC, Special Report of Working Group III of the Intergovernmental Panel on Climate Change (2000). Special Report on Emission Scenarios (SRES). IPCC, Cambridge University Press, Cambridge.Google Scholar
  43. IPCC, Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (2007). Climate Change 2007: Synthesis Report. Cambridge University Press, Cambridge, pp 104.Google Scholar
  44. IPCC, Contribution of Working Groups I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2013). Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, 109-113.Google Scholar
  45. IPCC, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014). Climate Change 2014: Synthesis Report. IPCC, Geneva, Switzerland: Cambridge University Press, Cambridge, pp 151.Google Scholar
  46. Islam, A., Sikka, A. K., Saha, B., & Singh, A. (2012). Streamflow Response to Climate Change in the Brahmani River Basin, India. Water Resources Management, 26(6), 1409–1424.CrossRefGoogle Scholar
  47. Jahandideh-Tehrani, M., Bozorg-Haddad, O., & Loáiciga, H. A. (2015). Hydropower Reservoir Management Under Climate Change : The Karoon Reservoir System. Water Resources Management, 29(3), 749–770.CrossRefGoogle Scholar
  48. Kabiri, R., Bai, V. R., & Chan, A. (2015). Assessment of hydrologic impacts of climate change on the runoff trend in Klang Watershed , Malaysia. Environmental Earth Sciences, 73(1), 27–37.CrossRefGoogle Scholar
  49. Kankam-Yeboah, K., Obuobie, E., Amisigo, B., Kankam-Yeboah, K., Obuobie, E., Amisigo, B., & Opoku-ankomah, Y. (2017). Impact of climate change on streamflow in selected river basins in Ghana Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58(4), 773–788.CrossRefGoogle Scholar
  50. Kara, F., & Yucel, I. (2015). Climate change effects on extreme flows of water supply area in Istanbul: utility of regional climate models and downscaling method. Environmental Monitoring and Assessment, 187(9), 1–18.CrossRefGoogle Scholar
  51. Karandish, F., Mousavi, S. S., & Tabari, H. (2016). Climate change impact on precipitation and cardinal temperatures in different climatic zones in Iran : analyzing the probable effects on cereal water-use efficiency. Stochastic Environmental Research and Risk Assessment, 31(8), 2121–2146.CrossRefGoogle Scholar
  52. Khoi, D. N., & Suetsugi, T. (2012). Uncertainty in climate change impacts on streamflow in Be River Catchment, Vietnam. Water Environment Journal, 26(4), 530–539.CrossRefGoogle Scholar
  53. Khoi, D. N., & Suetsugi, T. (2014). The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrological Processes, 28(3), 640–652.CrossRefGoogle Scholar
  54. Kim, U., & Kaluarachchi, J. J. (2009). Climate change impacts on water resource in the Upper Blue Nile River Basin, Ethiopia. Journal of the American Water Resources Association, 45(6), 1361–1378.CrossRefGoogle Scholar
  55. Latrubesse, E. M., Stevaux, J. C., & Sinha, R. (2005). Tropical rivers. Geomerphology, 70(3-4), 187–206.CrossRefGoogle Scholar
  56. Leander, R., & Buishand, T. A. (2007). Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332(3-4), 487–496.CrossRefGoogle Scholar
  57. Li, F., Zhang, Y., Xu, Z., Teng, J., Liu, C., & Liu, W. (2013). The impact of climate change on runoff in the southeastern Tibetan Plateau. Journal of Hydrology, 505, 188–201.CrossRefGoogle Scholar
  58. Li, J., Evans, J., Johnson, F., & Sharma, A. (2017). A comparison of methods for estimating climate change impact on design rainfall using a high-resolution RCM. Journal of Hydrology, 547, 413–427.CrossRefGoogle Scholar
  59. Masood, M., & Takeuchi, K. (2016). Climate change impacts and its implications on future water resource management in the Meghna Basin. Futures, 78-79, 1–18.CrossRefGoogle Scholar
  60. Masood, M., Yeh, P., Hanasaki, N., & Takeuchi, K. (2015). Model study of the impacts of future climate change on the hydrology of Ganges-Brahmaputra-Meghna basin. Hydrology and Earth System Sciences, 19(2), 747–770.CrossRefGoogle Scholar
  61. Maurer, E. P. (2007). Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California , under two emissions scenarios. Climatic Change, 82(3-4), 309–325.CrossRefGoogle Scholar
  62. Maurer, E. P. (2009). Climate model based consensus on the hydrologic impacts of climate change to the Rio Lempa basin of Central America. Hydrology and Earth System Sciences, 13, 183–194.CrossRefGoogle Scholar
  63. Mc Gregor, G. R., & Nieuwolt, S. (1998). Tropical climatology: an introduction to the climates of the low latitudes. New YorK: John Wiley & Sons.Google Scholar
  64. Mehr, A. D., & Kahya, E. (2017). Climate Change Impacts on Catchment-Scale Extreme Rainfall Variability : Case Study of Rize Province, Turkey. Journal of Hydrologic Engineering. Scholar
  65. Menzel, L., & Bu, G. (2002). Climate change scenarios and runoff response in the Mulde catchment (Southern Elbe, Germany). Journal of Hydrology, 267(1-2), 53–64.CrossRefGoogle Scholar
  66. Middelkoop, H., Daamen, K., Gellens, D., Grabs, W., Kwadijk, J. C. J., Lang, H., et al. (2001). Impact of climate change on hydrological regimes and water resources management in the Rhine basin. Climatic Change, 49(1-2), 105–128.CrossRefGoogle Scholar
  67. Mitchell, T. D., & Jones, P. D. (2005). An improved method of constructing a database of monthly climate observations and associated high-resolution grids. International Journal of Climatology, 25(6), 693–712.CrossRefGoogle Scholar
  68. Mohor, G. S., Rodriguez, D. A., Tomasella, J., & Junior, J. L. S. (2015). Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. Journal of Hydrology: Regional Studies, 4(Part B), 41–59.Google Scholar
  69. Montenegro, A., & Ragab, R. (2010). Hydrological response of a Brazilian semi-arid catchment to different land use and climate change scenarios: a modelling study. Hydrological Processes, 24(19), 2705–2723.CrossRefGoogle Scholar
  70. Narsimlu, B., Gosain, A. K., & Chahar, B. R. (2013). Assessment of future climate change impacts on water resources of Upper Sind River Basin , India using SWAT model. Water Resources Management, 27(10), 3647–3662.CrossRefGoogle Scholar
  71. Needham, H. F., Keim, B. D., & Sathiaraj, D. (2015). A review of tropical cyclone-generated storm surges: Global data sources, observations, and impacts. Reviews of Geophysics, 53(2), 545–591.CrossRefGoogle Scholar
  72. Nobrega, M. T., Collischonn, W., Tucci, C. E. M., & Paz, A. R. (2011). Uncertainty in climate change impacts on water resources in the Rio Grande Basin, Brazil. Hydrology and Earth System Sciences, 15(2), 585–595.CrossRefGoogle Scholar
  73. Onyutha, C., Tabari, H., Rutkowska, A., & Nyeko-ogiramoi, P. (2016). Comparison of different statistical downscaling methods for climate change rainfall projections over the Lake Victoria basin considering CMIP3 and CMIP5. Journal of Hydro-environment Research, 12, 31–45.CrossRefGoogle Scholar
  74. Ouyang, F., Zhu, Y., & Fu, G. (2015). Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment. Stochastic Environmental Research and Risk Assessment, 29(7), 1781–1795.CrossRefGoogle Scholar
  75. Pattnayak, K. C., Kar, S. C., Dalal, M., & Pattnayak, R. K. (2017). Projections of annual rainfall and surface temperature from CMIP5 models over the BIMSTEC countries. Global and Planetary Change, 152, 152–166.CrossRefGoogle Scholar
  76. Pechlivanidi, I. G., Jackson, B. M., Mcintyre, N. R., & Wheater, H. S. (2011). Catchment scale hydrological modelling: a review of model types, calibration appraoches and uncertaintity analysis methods in the context of recent developments in technology and applications. Global NEST Journal, 13(3), 193–214.Google Scholar
  77. Peel, M. C., Finlayson, B. L., & Mcmahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.CrossRefGoogle Scholar
  78. Petheram, C., Rustomji, P., McVicar, T. R., Cai, W., Chiew, F. H. S., Vleeshouwer, J., Van Niel, T. G., Li, L. T., Cresswell, R. G., Dnohue, R. J., Teng, J., & Perraud, J. M. (2012). Estimating the impact of projected climate change on runoff across the tropical Savannas and semiarid rangelands of Northern Australia. American Meteorological Society, 13, 483–503.Google Scholar
  79. Phan, D. B., Wu, C. C., & Hsieh, S. C. (2011). Impact of climate change on stream discharge and sediment yield in Northern Vietnam. Water Resources, 38(6), 827–836.CrossRefGoogle Scholar
  80. Pichuka, S., Prasad, R., Maity, R., & Kunstmann, H. (2017). Development of a method to identify change in the pattern of extreme streamflow events in future climate : Application on the Bhadra reservoir inflow in India. Journal of Hydrology: Regional Studies, 9, 236–246.Google Scholar
  81. Pilling, C. G., & Jones, J. A. A. (2002). The impact of future climate change on seasonal discharge , hydrological processes and extreme flows in the Upper Wye experimental catchment, mid-Wales. Hydrological Processes, 16(6), 1201–1213.CrossRefGoogle Scholar
  82. Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2012). Assessment of future streamflow over the Sesan catchment of the Lower Mekong Basin in Vietnam. Hydrological Processes, 26(24), 3661–3668.CrossRefGoogle Scholar
  83. Raghavan, S. V., Vu, M. T., & Liong, S. Y. (2017). Ensemble climate projections of mean and extreme rainfall over Vietnam. Global and Planetary Change, 148, 96–104.CrossRefGoogle Scholar
  84. Rana, A., Foster, K., Bosshard, T., Olsson, J., & Bengtsson, L. (2014). Impact of climate change on rainfall over Mumbai using Distribution-based Scaling of Global Climate Model projections. Journal of Hydrology: Regional Studies, 1, 107–128.Google Scholar
  85. Raneesh, K. Y., & Santosh, G. T. (2017). A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrological Sciences Journal, 56(6), 946–965.CrossRefGoogle Scholar
  86. Ranger, N., Hallegatte, S., Bhattacharya, S., Bachu, M., Priya, S., Dhore, K., et al. (2011). An assessment of the potential impact of climate change on flood risk in Mumbai. Climatic Change, 104(1), 139–167.CrossRefGoogle Scholar
  87. Räty, O., Räisänen, J., Ylhäisi, S., & J. (2014). Evaluation of delta and bias correction methods for future daily precipitation: intermodel cross-validation using ENSEMBLES simulations. Climate Dynamics, 42(0-10), 2287–2303.CrossRefGoogle Scholar
  88. Rui, H., Teng, W. L., Vollmer, B., Mocko, D. M., Beaudoing, H. K., & Rodell, M. (2011). NASA Giovanni portals for NLDAS/GLDAS online visualization, analysis, and intercomparison. NASA Technical Report. Accessed 12 Sept 2019.
  89. Santer, B. D., Wigley, T. M. L., Mears, C., Wentz, F. J., Klein, S. A., Seidel, D. J., Taylor, K. E., et al. (2005). Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 1551–1556.CrossRefGoogle Scholar
  90. Schlesinger, M. E. (1983). A review of climate model simulations of CO2 induced-warming. International Journal of Environmental Studies, 20(2), 103–114.CrossRefGoogle Scholar
  91. Setegn, S. G., Rayner, D., Melesse, A. M., & Dargahi, B. (2011). Impact of climate change on the hydroclimatology of Lake Tana Basin , Ethiopia. Water Resources Research, 47, 1–13.CrossRefGoogle Scholar
  92. Shaaban, A. J., Amin, M. Z. M., Chen, Z. Q., & Ohara, N. (2011). Regional modeling of climate change impact on Peninsular Malaysia water resources. Journal of Hydrologic Engineering. Scholar
  93. Shahvari, N., Khalilian, S., Mosavi, S. H., & Mortazavi, S. A. (2019). Assessing climate change impacts on water resources and crop yield: a case study of Varamin plain basin, Iran. Environmental Monitoring and Assessment, 191, 1–12. Scholar
  94. Sharma, D., & Babel, M. S. (2013). Application of downscaled precipitation for hydrological climate-change impact assessment in the upper Ping River Basin of Thailand. Climate Dynamics, 41(9-10), 2589–2602.CrossRefGoogle Scholar
  95. Shrestha, S., Shrestha, M., & Babel, M. S. (2016). Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin , Nepal. Environmental Earth Sciences, 75(4), 1–13.CrossRefGoogle Scholar
  96. Singh, R., Arya, D. S., Taxak, A. K., & Vojinovic, Z. (2016). Potential impact of climate change on rainfall intensity-duration-frequency curves in Roorkee, India. Water Resources Management, 30(13), 4603–4616.CrossRefGoogle Scholar
  97. Sood, A., Muthuwatta, L., & Mccartney, M. (2017). A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water International, 38(3), 297–311.CrossRefGoogle Scholar
  98. Sorribas, M. V., Paiva, R. C. D., Melack, J. M., Bravo, J. M., Jones, C., Carvalho, L., et al. (2016). Projections of climate change effects on discharge and inundation in the Amazon basin. Climatic Change, 136(3-4), 555–570.CrossRefGoogle Scholar
  99. Syvitski, J. P. M., Cohen, S., Kettner, A. J., & Brakenridge, G. R. (2014). How important and different are tropical rivers ? — An overview. Geomorphology, 227, 5–17.CrossRefGoogle Scholar
  100. Tan, M. L., Ibrahim, A. L., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research, 189, 1–10.CrossRefGoogle Scholar
  101. Tang, Q., Gao, H., Lu, H., & Lettenmaier, D. P. (2009). Remote sensing: hydrology. Progress in Physical Geography, 33(4), 490–509.CrossRefGoogle Scholar
  102. Taye, M. T., Ntegeka, V., Ogiramoi, N. P., Willems, P., Leuven, U., & Division, H. (2011). Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin. Hydrology and Earth System Sciences, 15, 209–222.CrossRefGoogle Scholar
  103. Teferi, M., Willems, P., & Block, P. (2015). Implications of climate change on hydrological extremes in the Blue Nile basin : a review. Journal of Hydrology: Regional Studies, 4, 280–293.Google Scholar
  104. Teutschbein, C., & Seibert, J. (2012). Bias correction of regional climate model simulations for hydrological climate-change impact studies : review and evaluation of different methods. Journal of Hydrology, 456-457, 12–29.CrossRefGoogle Scholar
  105. Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., et al. (2011). The representative concentration pathways: an overview. Climatic Change, 109(1), 5–31.CrossRefGoogle Scholar
  106. Vecchi, G. A., & Soden, B. J. (2007). Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450(7172), 1066–1070.CrossRefGoogle Scholar
  107. Viola, M. R., de Mello, C. R., Chou, S. C., Yanagi, S. N., & Gomes, J. L. (2015). Assessing climate change impacts on Upper Grande River Basin hydrology, Southeast Brazil. International Journal of Climatology, 35(6), 1054–1068.CrossRefGoogle Scholar
  108. Vuille, M., & Bradley, R. S. (2000). Mean annual temperature trends and their vertical structure in the tropical Andes. Geophysical Research Letters, 27(23), 3885–3888.CrossRefGoogle Scholar
  109. Wang, Z., Ficklin, D. L., Zhang, Y., & Zhang, M. (2012). Impact of climate change on stream fl ow in the arid Shiyang River Basin of northwest China. Hydrological Processes, 26(18), 2733–2744.CrossRefGoogle Scholar
  110. Wang, D., Hagen, S. C., & Alizad, K. (2013). Climate change impact and uncertainty analysis of extreme rainfall events in the Apalachicola River basin, Florida. Journal of Hydrology, 480, 125–135.CrossRefGoogle Scholar
  111. Watanabe, S., Kanae, S., Seto, S., Yeh, P. J., Hirabayashi, Y., & Oki, T. (2012). Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research-Atmospheres, 117(D23), 1–13.CrossRefGoogle Scholar
  112. Wentz, F. J., Ricciardulli, L., Hilburn, K., & Mears, C. (2007). How much more rain will global warming bring? Science, 317(5835), 233–235.CrossRefGoogle Scholar
  113. Wood, A. W., Maurer, E. P., Kumar, A., & Lettenmaier, D. P. (2002). Long-range experimental hydrologic forecasting for the eastern United States. Journal of Geophysical Research-Atmospheres, 107(D20).Google Scholar
  114. Wood, A. W., Leung, L. R., Sridhar, V., & Lettenmaier, D. P. (2004). Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62(1-3), 189–216.CrossRefGoogle Scholar
  115. Xia, Y., Mitchell, K., Ek, M., Sheffield, J., Cosgrove, B., Wood, E., Luo, L., Alonge, C., Wei, H., Meng, J., Livneh, B., Lettenmaier, D. P., Koren, V., Duan, Q., Mo, K., Fan, Y., & Mocko, D. (2012). Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. International Journal of Geophysical Research Atmospheres. Scholar
  116. Yu, Z., Gu, H., Wang, J., Xia, J., & Lu, B. (2017). Effect of projected climate change on the hydrological regime of the Yangtze River Basin, China. Stochastic Environmental Research and Risk Assessment, 32(1), 1–16.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of EngineeringGriffith UniversityGold CoastAustralia
  2. 2.CSIRO Land and WaterCanberraAustralia

Personalised recommendations