Advertisement

A study of the radiological baseline conditions around the planned Sinop (Turkey) nuclear power plant using the mapping method

  • Hasan BaltasEmail author
  • Cafer Mert Yesilkanat
  • Erkan Kiris
  • Murat Sirin
Article
  • 159 Downloads

Abstract

This study makes a first attempt at a detailed estimation of the background radioactivity level and its distribution at the Sinop nuclear power plant site. The activity concentration levels of 226Ra, 232Th, 40K and 137Cs radionuclides in soil samples collected from 88 locations around Sinop Province, Turkey, in November 2016, were measured using gamma spectrometry. The distributions of radionuclide levels obtained from the results were evaluated using a geostatistical method, and the estimated radiation levels were determined using the ordinary kriging (OK) method, which is the best linear unbiased estimator (BLUE) for unmeasured points. Estimates of distribution results were evaluated using cross-validation diagrams, and it was shown that the OK method could predict radiological distributions for appropriate criteria. Finally, using the kriging parameters, distributions of radiation levels for the entire work area were mapped at a spatial resolution of 100 × 100 m2. These maps show that the natural radionuclides (226Ra, 232Th and 40K) are distributed at higher levels to the southeast of Sinop than in the other regions, and the activity of an artificial radionuclide (137Cs) is high in the interior and northern sections.

Keywords

Sinop Province Nuclear power plant Soil Radiological map Baseline data 

Notes

Funding information

This work was supported by Scientific Research Projects Coordination Unit of Recep Tayyip Erdogan University (project number: FBA-2016-661) in 2016.

References

  1. Abba, H. T., Hassan, W. M. S. W., Saleh, M. A., Aliyu, A. S., & Ramli, A. T. (2017). Terrestrial gamma radiation dose (TGRD) levels in northern zone of Jos Plateau, Nigeria: Statistical relationship between dose rates and geological formations. Radiation Physics and Chemistry, 140, 167–172.  https://doi.org/10.1016/j.radphyschem.2017.01.023. CrossRefGoogle Scholar
  2. Baltas, H., Kiris, E., Ustabas, I., Yilmaz, E., Sirin, M., Kuloglu, E., & Gunes, B. E. (2014). Determination of natural radioactivity levels of some concretes and mineral admixtures in Turkey. Asian Journal of Chemistry, 26(13), 3946–3952.  https://doi.org/10.14233/ajchem.2014.16045. CrossRefGoogle Scholar
  3. Baltas, H., Kiris, E., & Sirin, M. (2017). Determination of radioactivity levels and heavy metal concentrations in seawater, sediment and anchovy (Engraulis encrasicolus) from the Black Sea in Rize, Turkey. Marine Pollution Bulletin, 116(1–2). doi: https://doi.org/10.1016/j.marpolbul.2017.01.016. CrossRefGoogle Scholar
  4. Baltas, H., Sirin, M., Dalgic, G., & Cevik, U. (2018). An overview of the ecological half-life of the 137Cs radioisotope and a determination of radioactivity levels in sediment samples after Chernobyl in the Eastern Black Sea, Turkey. Journal of Marine Systems, 177, 21–27.CrossRefGoogle Scholar
  5. Beretka, J., & Mathew, P. J. (1985). Natural radioactivity of Australian building materials, industrial wastes and by-products. Health physics, 48(1), 87–95.CrossRefGoogle Scholar
  6. Brahmanandhan, G., Selvasekarapandian, S., Malathi, J., Khanna, D., Rajan, M., & Hegde, A. (2007). Natural radioactivity in the soil samples in and around Kudankulam nuclear power plant site. Journal of Radioanalytical and Nuclear Chemistry, 274(2), 361–366.CrossRefGoogle Scholar
  7. Cafaro, C., Bossew, P., Giovani, C., & Garavaglia, M. (2014). Definition of radon prone areas in Friuli Venezia Giulia region, Italy, using geostatistical tools. Journal of environmental radioactivity, 138, 208–219.CrossRefGoogle Scholar
  8. Clark, I. (1979). Practical geostatistics (Vol. 3). London: Applied Science Publishers.Google Scholar
  9. Currie, L. A. (1968). Limits for qualitative detection and quantitative determination, Application to radiochemistry. Analytical chemistry, 40(3), 586–593.CrossRefGoogle Scholar
  10. Diggle, P. J., & Ribeiro, P. J., Jr. (2007). Model based geostatistics. New York: Springer.Google Scholar
  11. Durusoy, A., & Yildirim, M. (2017). Determination of radioactivity concentrations in soil samples and dose assessment for Rize Province, Turkey. Journal of Radiation Research and Applied Sciences, 10, 348–352.CrossRefGoogle Scholar
  12. El Samad, O., Baydoun, R., Nsouli, B., & Darwish, T. (2013). Determination of natural and artificial radioactivity in soil at North Lebanon province. Journal of Environmental Radioactivity, 125, 36–39.CrossRefGoogle Scholar
  13. Elsaman, R., Omer, M. A. A., Seleem, E. M. M., & El-Taher, A. (2018). Natural radioactivity levels and radiological hazards in soil samples around Abu Karqas Sugar Factory. Journal of Environmental Science and Technology, 11(1), 28–38.CrossRefGoogle Scholar
  14. Hiemstra, P. H., Pebesma, E. J., Twenhöfel, C. J. W., & Heuvelink, G. B. M. (2009). Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network. Computers & Geosciences, 35(8), 1711–1721.CrossRefGoogle Scholar
  15. Holm, E., & Ballestra, S. (1989). Measurement of radionuclides in food and the environment, A Guidebook. Vienna, Ser: IAEA Tech. Rept.Google Scholar
  16. Hung, N. Q., Chuong, H. D., Thanh, T. T., & Van Tao, C. (2016). Intercomparison NaI (Tl) and HPGe spectrometry to studies of natural radioactivity on geological samples. Journal of environmental radioactivity, 164, 197–201.CrossRefGoogle Scholar
  17. Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.Google Scholar
  18. İnal, C., & Yiğit, C. Ö. (2003). Jeodezik uygulamalarda kriging enterpolasyon yönteminin kullanılabilirliği (pp. 177–185). Konya: Coğrafi Bilgi Sistemleri ve Jeodezik Ağlar Çalıştayı.Google Scholar
  19. Kam, E., Bozkurt, A., & Ilgar, R. (2010). A study of background radioactivity level for Canakkale, Turkey. Environmental Monitoring and Assessment, 168, 685–690.CrossRefGoogle Scholar
  20. Karadeniz, Ö., Karakurt, H., & Akal, C. (2015). Natural radionuclide activities in forest soil horizons of Mount IDA/Kazdagi, Turkey. Environmental Monitoring and Assessment, 187, 319.CrossRefGoogle Scholar
  21. Kayakökü, H., & Doğru, M. (2017). Radioactivity analysis of soil samples taken from the western and northern shores of Lake Van, Turkey. Applied Radiation and Isotopes, 128, 231–236.CrossRefGoogle Scholar
  22. Kobya, Y., Taşkın, H., Yeşilkanat, C. M., Çevik, U., Karahan, G., & Çakır, B. (2015). Radioactivity survey and risk assessment study for drinking water in the Artvin province, Turkey. Water, Air, & Soil Pollution, 226(3), 49.CrossRefGoogle Scholar
  23. Krige, D. G. (1966). Two-dimensional weighted moving average trend surfaces for ore evaluation. South African Institute of Mining and Metallurgy Johannesburg.Google Scholar
  24. Krieger, R. (1981). Radioactivity of construction materials. Betonwerk Fertigteil Techn, 47(468).Google Scholar
  25. Kucukomeroglu, B., Karadeniz, A., Damla, N., Yesilkanat, C. M., & Cevik, U. (2016). Radiological maps in beach sands along some coastal regions of Turkey. Marine pollution bulletin, 112(1), 255–264.CrossRefGoogle Scholar
  26. Kurnaz, A., Kucukomeroglu, B., Damla, N., & Cevik, U. (2011). Radiological maps for Trabzon, Turkey. Journal of Environmental Radioactivity, 102, 393–399.CrossRefGoogle Scholar
  27. Leelőssy, Á., Mészáros, R., & Lagzi, I. (2011). Short and long term dispersion patterns of radionuclides in the atmosphere around the Fukushima Nuclear Power Plant. Journal of environmental radioactivity, 102(12), 1117–1121.CrossRefGoogle Scholar
  28. Li, C., Lu, Z., Ma, T., & Zhu, X. (2009). A simple kriging method incorporating multiscale measurements in geochemical survey. Journal of Geochemical Exploration, 101(2), 147–154.CrossRefGoogle Scholar
  29. Lukšienė, B., Marčiulionienė, D., Rožkov, A., Gudelis, A., Holm, E., & Galvonaitė, A. (2012). Distribution of artificial gamma-ray emitting radionuclide activity concentration in the top soil in the vicinity of the Ignalina Nuclear Power Plant and other regions in Lithuania. Science of the total environment, 439, 96–105.CrossRefGoogle Scholar
  30. Matheron, G. (1970). Random structures and mathematical geology. REVUE DE L INSTITUT INTERNATIONAL DE STATISTIQUE-REVIEW OF THE INTERNATIONAL STATISTICAL INSTITUTE, 38(1), 1.CrossRefGoogle Scholar
  31. McGrath, D., Zhang, C., & Carton, O. T. (2004). Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environmental Pollution, 127(2), 239–248.CrossRefGoogle Scholar
  32. Mičieta, K., & Murín, G. (2007). Wild plant species in bio-indication of radioactive-contaminated sites around Jaslovske Bohunice nuclear power plant in the Slovak Republic. Journal of Environmental radioactivity, 93(1), 26–37.CrossRefGoogle Scholar
  33. Olea, R. A. (1982). Optimization of the high plains aquifer observation network. Kansas: Kansas Geological Survey.Google Scholar
  34. Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena, 113, 56–69.CrossRefGoogle Scholar
  35. Pebesma, E. J., & Bivand, R. S. (2005). Classes and methods for spatial data in R. R news, 5(2), 9–13.Google Scholar
  36. Pebesma, E. J., & Wesseling, C. G. (1998). Gstat: A program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1), 17–31.CrossRefGoogle Scholar
  37. Protection, I. C. on R. (1991). ICRP Publication 60: 1990 Recommendations of the international commission on radiological protection. Elsevier Health Sciences.Google Scholar
  38. Radiation, U. N. S. C. on the E. of A. (2000). Sources and effects of ionizing radiation: Sources (Vol. 1). United Nations Publications.Google Scholar
  39. Sanusi, M. S. M., Ramli, A. T., Gabdo, H. T., Garba, N. N., Heryanshah, A., Wagiran, H., & Said, M. N. (2014). Isodose mapping of terrestrial gamma radiation dose rate of Selangor state, Kuala Lumpur and Putrajaya, Malaysia. Journal of environmental radioactivity, 135, 67–74.CrossRefGoogle Scholar
  40. Savelieva, E. (2005). Using ordinary kriging to model radioactive contamination data. Applied GIS, 1(2), 1–10.CrossRefGoogle Scholar
  41. Shohda, A. M., Draz, W. M., Ali, F. A., & Yassien, M. A. (2018). Natural radioactivity levels and evaluation of radiological hazards in some Egyptian ornamental stones. Journal of Radiation Research and Applied Sciences, 11, 323–327.CrossRefGoogle Scholar
  42. Taskin, H., Karavus, M., Ay, P., Topuzoglu, A., Hidiroglu, S., & Karahan, G. (2009). Radionuclide concentrations in soil and lifetime cancer risk due to gamma radioactivity in Kirklareli, Turkey. Journal of environmental radioactivity, 100(1), 49–53.CrossRefGoogle Scholar
  43. Taşkın, H., Yeşilkanat, C. M., Kobya, Y., & Çevik, U. (2018). Evaluation and mapping of radionuclides in the terrestrial environment and health hazard due to soil radioactivity in Artvin, Turkey. Arabian Journal of Geosciences, 11(23), 729.  https://doi.org/10.1007/s12517-018-4063-8.CrossRefGoogle Scholar
  44. Team, R. D. C. (2005). R: A language and environment for statistical computing, reference index version 2.9. 2. Vienna, Austria: R Foundation for Statistical Computing ISBN 3–900051-07-0, URL http://www. rproject. org.Google Scholar
  45. Tsai, T.-L., Lin, C.-C., Wang, T.-W., & Chu, T.-C. (2008). Radioactivity concentrations and dose assessment for soil samples around nuclear power plant IV in Taiwan. Journal of radiological protection, 28(3), 347.CrossRefGoogle Scholar
  46. Warnery, E., Ielsch, G., Lajaunie, C., Cale, E., Wackernagel, H., Debayle, C., & Guillevic, J. (2015). Indoor terrestrial gamma dose rate mapping in France: a case study using two different geostatistical models. Journal of environmental radioactivity, 139, 140–148.CrossRefGoogle Scholar
  47. Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists (Statistics in Practice).Google Scholar
  48. Yeşilkanat, C. M., Kobya, Y., Taşkin, H., & Çevik, U. (2015). Dose rate estimates and spatial interpolation maps of outdoor gamma dose rate with geostatistical methods: A case study from Artvin, Turkey. Journal of environmental radioactivity, 150, 132–144.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019
corrected publication 2019

Authors and Affiliations

  • Hasan Baltas
    • 1
    Email author
  • Cafer Mert Yesilkanat
    • 2
  • Erkan Kiris
    • 1
  • Murat Sirin
    • 1
  1. 1.Department of Physics, Faculty of Arts and ScienceRecep Tayyip Erdoğan UniversityRizeTurkey
  2. 2.Science Teaching Department, Faculty of EducationArtvin Çoruh UniversityArtvinTurkey

Personalised recommendations