Advertisement

Chlorophyll-a, dissolved organic carbon, turbidity and other variables of ecological importance in river basins in southern Ontario and British Columbia, Canada

  • K. Zolfaghari
  • G. Wilkes
  • S. Bird
  • D. Ellis
  • K. D. M. Pintar
  • N. Gottschall
  • H. McNairn
  • D. R. LapenEmail author
Article
  • 82 Downloads

Abstract

Optical sensing of chlorophyll-a (chl-a), turbidity, and fluorescent dissolved organic matter (fDOM) is often used to characterize the quality of water. There are many site-specific factors and environmental conditions that can affect optically sensed readings; notwithstanding the comparative implication of different procedures used to measure these properties in the laboratory. In this study, we measured these water quality properties using standard laboratory methods, and in the field using optical sensors (sonde-based) at water quality monitoring sites located in four watersheds in Canada. The overall objective of this work was to explore the relationships among sonde-based and standard laboratory measurements of the aforementioned water properties, and evaluate associations among these eco-hydrological properties and land use, environmental, and ancillary water quality variables such as dissolved organic carbon (DOC) and total suspended solids (TSS). Differences among sonde versus laboratory relationships for chl-a suggest such relationships are impacted by laboratory methods and/or site specific conditions. Data mining analysis indicated that interactive site-specific factors predominately impacting chl-a values across sites were specific conductivity and turbidity (variables with positive global associations with chl-a). The overall linear regression predicting DOC from fDOM was relatively strong (R2 = 0.77). However, slope differences in the watershed-specific models suggest laboratory DOC versus fDOM relationships could be impacted by unknown localized water quality properties affecting fDOM readings, and/or the different standard laboratory methods used to estimate DOC. Artificial neural network analyses (ANN) indicated that higher relative chl-a concentrations were associated with low to no tree cover around sample sites and higher daily rainfall in the watersheds examined. Response surfaces derived from ANN indicated that chl-a concentrations were higher where combined agricultural and urban land uses were relatively higher.

Keywords

Chlorophyll-a Optical probes Sonde Fluorescent dissolved organic matter Dissolved organic carbon turbidity Watershed Water quality 

Notes

Acknowledgments

We would like to thank the Ausable-Bayfield and the South Nation Conservation Authorities for field support and collaboration. We would also like to thank Lyne Sabourin (Agriculture and Agri-Food Canada (AAFC)) for supporting coordination of field activities in Southern Ontario, and Weifan Lu, Yigit Keskinler, and Mike Ballard of Algonquin College, Ottawa for GIS analytical support. Contributions to support this work were provided by AAFC and the Build in Canada Innovation Program and Fluvial Systems Research Inc.

Supplementary material

10661_2019_7800_MOESM1_ESM.docx (702 kb)
ESM 1 (DOCX 701 kb)

References

  1. APHA. (1998). 10200H chlorophyll. In: standard methods for the examination of water and wastewater. In L. S. Clesceri, A. E. Greenberg, and A. D. Eaton (Eds.) (20th ed.). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  2. APHA (2012). Section 1060, Collection and Preservation of Samples. In: Standard Methods for the Examination of Water and Wastewater. In Eugene W. Rice, Rodger B. Baird, Andrew D. Eaton, and L. S. Clesceri (Eds.), (22nd ed., pp. 1360). Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  3. Arar, E. J. (1997a). Method 446.0: In vitro determination of chlorophylls a, b, c + c and pheopigments in 1 2 marine and freshwater algae by. In Visible spectrophotometry. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  4. Arar, E. J. (1997b). Method 447.0 - determination of chlorophylls a and b and identification of other pigments of interest in marine and freshwater algae using high performance liquid chromatography with visible wavelength detection. Washington, Dc: U.S. Environmental Protection Agency.Google Scholar
  5. Arar, E. J., & Collins, G. B. (1997). Method 445.0 in vitro determination of chlorophyll a and pheophytin Ain marine and freshwater algae by fluorescence. Washington, DC: U.S. Environmental Protection Agency.Google Scholar
  6. Arthington, Á. H., Naiman, R. J., Mcclain, M. E., & Nilsson, C. (2010). Preserving the biodiversity and ecological services of rivers: new challenges and research opportunities. Freshwater Biology, 55(1), 1–16.CrossRefGoogle Scholar
  7. Bowling, L. C., Ryan, D., Holliday, J., & Honeyman, G. (2013). Evaluation of in situ fluorometry to determine cyanobacterial abundance in the Murray and Lower Darling Rivers. Aurtalia. River Research and Applications, 29(8), 1059–1071.  https://doi.org/10.1002/rra.2601.CrossRefGoogle Scholar
  8. Bowling, L. C., Zamyadi, A., & Henderson, R. K. (2016). Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Water Research, 105, 22–33.  https://doi.org/10.1016/j.watres.2016.08.051.CrossRefGoogle Scholar
  9. Breiman, L., Freidman, J., Olshen, R., & Stone, C. (1984). Classification and Regression Trees. Pacific Grove: Wadsworth.Google Scholar
  10. Cârstea, E. M., Ghervase, L., Pavelescu, G., & Iojă, C. I. (2012). Correlation of dissolved organic matter fluorescence and several metals concentration in a freshwater system. Procedia Environmental Sciences, 14, 41–48.  https://doi.org/10.1016/j.proenv.2012.03.005.CrossRefGoogle Scholar
  11. Chang, N. B., Imen, S., & Vannah, B. (2015). Remote sensing for monitoring surface water quality status and ecosystem state in relation to the nutrient cycle: a 40-year perspective. Critical Reviews in Environmental Science and Technology, 45(2), 101–166.  https://doi.org/10.1080/10643389.2013.829981.CrossRefGoogle Scholar
  12. Chen, P., Pan, D., Mao, Z., & Tao, B. (2015). Detection of water quality parameters in Hangzhou Bay using a portable laser fluorometer. Marine Pollution Bulletin, 93(1–2), 163–171.  https://doi.org/10.1016/j.marpolbul.2015.01.023. CrossRefGoogle Scholar
  13. Chen, W., Wilkes, G., Khan, I. U., Pintar, K. D., Thomas, J. L., Lévesque, C. A., Chapados, J. T., Topp, E., & Lapen, D. R. (2018). Aquatic bacterial communities associated with land use and environmental factors in agricultural landscapes using a metabarcoding approach. Frontiers in Microbiology, 9.Google Scholar
  14. Cui, J. S., & Lv, P. Y. (2014). Turbidity effect on the fluorescence determination of chlorophyll-a in water. Applied Mechanics and Materials, 522(524), 60–63.CrossRefGoogle Scholar
  15. Dos Santos, A. C. A., Calijuri, M. C., Moraes, E. M., Adorno, M. A. T., Falco, P. B., Carvalho, D. P., et al. (2003). Comparison of three methods for chlorophyll determination: spectrophotometry and fluorimetry in samples containing pigment mixtures and spectrophotometry in samples with separate pigments through high performance liquid chromatography. Acta Limnologica Brasiliensia, (12), 15.Google Scholar
  16. Environment and Climate Change Canada (1998). Fraser River action plan. http://publications.gc.ca/site/eng/9.805610/publication.html
  17. Environment and Climate Change Canada (2018). Historical climate data. http://climate.weather.gc.ca/historical_data/search_historic_data_e.html Accessed summer fall 2018.
  18. Exo Sonde User Manual. Advanced water quality monitoring platform. Item# 603789REF. Revision G. https://www.ysi.com/File%20Library/Documents/Manuals/EXO-User-Manual-Web.pdf.
  19. Frey, S. K., Gottschall, N., Wilkes, G., Grégoire, D. S., Topp, E., Pintar, K. D. M., Sunohara, M., Marti, R., & Lapen, D. R. (2015). Rainfall-induced runoff from exposed streambed sediments: an important source of water pollution. Journal of Environmental Quality, 44(1), 236–247.CrossRefGoogle Scholar
  20. Government of Canada. (2015). FoodNet Canada: an overview. Available at: http://www.phac-aspc.gc.ca/foodnetcanada/overview-apercu-eng.php. Accessed on December, 2018.
  21. Hall, K. J., & Schreier, H. (1996). Urbanization and agricultural intensification in the lower Fraser River valley: Impacts on water use and quality. [conference paper]. GeoJournal, 40(1–2), 135–146.Google Scholar
  22. Hambrook Berkman, J. A., and Canova, M. G. (2007). Algal biomass indicators (version 1.0): U.S. Geological Survey techniques of water-resources investigations, book 9, chap. A7, sec. 7.4, August, accessed [7 June 2017], from http://pubs.water.usgs.gov/twri9A/.
  23. Isoyama, R., Taie, M., Kageyama, T., Miura, M., Maeda, A., Mori, A., & Lee, S. S. (2017). A feasibility study on the simultaneous sensing of turbidity and chlorophyll a concentration using a simple optical measurement method. Micromachines, 8(4), 112.  https://doi.org/10.3390/mi8040112.CrossRefGoogle Scholar
  24. Kermavnar, J., & Vilhar, U. (2017). Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosystems, 20(6), 1373–1387.CrossRefGoogle Scholar
  25. Khamis, K., Bradley, C., Stevens, R., & Hannah, D. M. (2017). Continuous field estimation of dissolved organic carbon concentration and biochemical oxygen demand using dual-wavelength fluorescence, turbidity and temperature. Hydrological Processes, 31(3), 540–555.  https://doi.org/10.1002/hyp.11040.CrossRefGoogle Scholar
  26. Köhler, J., Hachoł, J., & Hilt, S. (2010). Regulation of submersed macrophyte biomass in a temperate lowland river: interactions between shading by bank vegetation, epiphyton and water turbidity. Aquatic Botany, 92(2), 129–136.CrossRefGoogle Scholar
  27. Kovács, J., Tanos, P., Várbíró, G., Anda, A., Molnár, S., & Hatvani, I. G. (2017). The role of annual periodic behavior of water quality parameters in primary production – chlorophyll-a estimation. Ecological Indicators, 78, 311–321.  https://doi.org/10.1016/j.ecolind.2017.03.002. CrossRefGoogle Scholar
  28. Lapen, D. R., Topp, G. C., Gregorich, E. G., Hayhoe, H. N., & Curnoe, W. E. (2001). Divisive field-scale associations between corn yields, management, and soil information. Soil and Tillage Research, 58, 193–206.  https://doi.org/10.1016/S0167-1987(00)00168-9.CrossRefGoogle Scholar
  29. Lapen, D. R., Schmidt, P. J., Thomas, J. L., Edge, T. A., Flemming, C., Keithlin, J., Neumann, N., Pollari, F., Ruecker, N., Simhon, A., Topp, E., Wilkes, G., & Pintar, K. D. M. (2016). Towards a more accurate quantitative assessment of seasonal cryptosporidium infection risks in surface waters using species and genotype information. Water Research, 105, 625–637.  https://doi.org/10.1016/j.watres.2016.08.023.CrossRefGoogle Scholar
  30. Liu, X., Zhang, Y., Shi, K., Zhu, G., Xu, H., & Zhu, M. (2014). Absorption and fluorescence properties of chromophoric dissolved organic matter: Implications for the monitoring of water quality in a large subtropical reservoir. Environmental Science and Pollution Research, 21(24), 14078–14090.  https://doi.org/10.1007/s11356-014-3319-4.CrossRefGoogle Scholar
  31. Mizaikoff, B. (2003). Infrared optical sensors for water quality monitoring. Water Science and Technology, 47(2), 35–42.CrossRefGoogle Scholar
  32. Murphy, K. R., Butler, K. D., Spencer, R. G. M., Stedmon, C. A., Boehme, J. R., & Aiken, G. R. (2010). Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science and Technology, 44(24), 9405–9412.  https://doi.org/10.1021/es102362t.CrossRefGoogle Scholar
  33. Murphy, K. R., Heery, B., Sullivan, T., Zhang, D., Paludetti, L., Lau, K. T., et al. (2015). A low-cost autonomous optical sensor for water quality monitoring. Talanta, 132, 520–527.  https://doi.org/10.1016/j.talanta.2014.09.045.CrossRefGoogle Scholar
  34. Mushtaq, F., & Nee Lala, M. G. (2017). Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto International, 32(3), 274–285.  https://doi.org/10.1080/10106049.2016.1140818.CrossRefGoogle Scholar
  35. Niu, C., Zhang, Y., Zhou, Y., Shi, K., Liu, X., & Qin, B. (2014). The potential applications of real-time monitoring of water quality in a large shallow lake (Lake Taihu, China) using a chromophoric dissolved organic matter fluorescence sensor. Sensors, 14(7), 11580–11594.  https://doi.org/10.3390/s140711580.CrossRefGoogle Scholar
  36. Pinckney, J., Papa, R., & Zingmark, R. (1994). Comparison of high-performance liquid chromatographic, spectrophotometric, and fluorometric methods for determining chlorophyll a concentrations in estaurine sediments. Journal of Microbiological Methods, 19(1), 59–66.CrossRefGoogle Scholar
  37. Pintar, K. D. M., Fazil, A., Pollari, F., Waltner-Toews, D., Charron, D. F., McEwen, S. A., & Walton, T. (2012). Considering the risk of infection by cryptosporidium via consumption of municipally treated drinking water from a surface water source in a southwestern Ontario community. Risk Analysis, 32(7), 1122–1138.  https://doi.org/10.1111/j.1539-6924.2011.01742.x.CrossRefGoogle Scholar
  38. Rice, E. W., Baird, R., Eaton, A. D., Clesceri, L. S., & Bridgewater, L. (2012). Standard methods for the examination of water and wastewater. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation.Google Scholar
  39. Rügner, H., Schwientek, M., Beckingham, B., Kuch, B., & Grathwohl, P. (2013). Turbidity as a proxy for total suspended solids (TSS) and particle facilitated transport in catchments. Environment and Earth Science, 69(2), 373–380.  https://doi.org/10.1007/s12665-013-2307-1.CrossRefGoogle Scholar
  40. Ruhala, S. S., & Zarnetske, J. P. (2017). Using in-situ optical sensors to study dissolved organic carbon dynamics of streams and watersheds: a review. Science of the Total Environment, 575, 713–723.  https://doi.org/10.1016/j.scitotenv.2016.09.113.CrossRefGoogle Scholar
  41. Rymszewicz, A., O'Sullivan, J. J., Bruen, M., Turner, J. N., Lawler, D. M., Conroy, E., & Kelly-Quinn, M. (2017). Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: a sensor inter-comparison study. Journal of Environmental Management, 199, 99–108.  https://doi.org/10.1016/j.jenvman.2017.05.017.CrossRefGoogle Scholar
  42. Song, K., Li, L., Tedesco, L., Clercin, N., Hall, B., Li, S., Shi, K., Liu, D., & Sun, Y. (2013). Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe. Environmental Science and Pollution Research, 20(8), 5330–5340.  https://doi.org/10.1007/s11356-013-1527-y.CrossRefGoogle Scholar
  43. Statistica, 2018. Statistica Documentation. STATISTICA Automated neural networks (SANN) - neural networks: an overview. (i) performing regression with 4-Bar linkage data. i). http://documentation.statsoft.com/STATISTICAHelp.aspx?path=SANN/Overview/SANNNeuralNetworksAnOverview ; ii) http://documentation.statsoft.com/STATISTICAHelp.aspx?path=SANN/Examples/SANNExample1PerformingRegressionwith4BarLinkageData Accessed Fall 2018.
  44. Steinberg, D., & Colla, P. (1995). CART: tree-structured non parametric data analysis. San Diego, CA: Salford Systems.Google Scholar
  45. Tabacchi, E., Lambs, L., Guilloy, H., Planty-Tabacchi, A. M., Muller, E., & Decamps, H. (2000). Impacts of riparian vegetation on hydrological processes. Hydrological Processes, 14(16–17), 2959–2976.CrossRefGoogle Scholar
  46. Thomas, J., Pintar, K., Wallis, P., & Neumann, N. (2016). Using host-specificity of cryptosporidium to understand contaminant sources, seasonality, and human health risk in three watersheds of differing land-use. Journal of Environmental Protection, 7, 372–381.  https://doi.org/10.4236/jep.2016.73033.CrossRefGoogle Scholar
  47. Trifu, M. C., & Daradici, V. (2014). New monitoring technique for rapid investigation of nitrates pollution in aquatic systems. Proc. IAHS, 364, 481–485.  https://doi.org/10.5194/piahs-364-481-2014.CrossRefGoogle Scholar
  48. Tuna, G., Arkoc, O., & Gulez, K. (2013). Continuous monitoring of water quality using portable and low-cost approaches. International Journal of Distributed Sensor Networks, 9(6), 249598.  https://doi.org/10.1155/2013/249598.CrossRefGoogle Scholar
  49. Veliz, M., Brock, H., & Neary, J. (2006). Ausable Bayfield Conservation Authority Watershed Report Card 2007 (p. 104). Exeter, Ontario: Ausable Bayfield Conservation Authority.Google Scholar
  50. Wade, A. J., Palmer-Felgate, E. J., Halliday, S. J., Skeffington, R. A., Loewenthal, M., Jarvie, H. P., Bowes, M. J., Greenway, G. M., Haswell, S. J., Bell, I. M., Joly, E., Fallatah, A., Neal, C., Williams, R. J., Gozzard, E., & Newman, J. R. (2012). Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring. Hydrology and Earth System Sciences, 16(11), 4323–4342.  https://doi.org/10.5194/hess-16-4323-2012.CrossRefGoogle Scholar
  51. Waller, M. E., Bramburger, A. J., & Cumming, B. F. (2016). Bi-weekly changes in phytoplankton abundance in 25 tributaries of Lake St. Francis, Canada: evaluating the occurrence of nuisance and harmful algae. [article]. Journal of Great Lakes Research, 42(5), 1049–1059.  https://doi.org/10.1016/j.jglr.2016.07.003.CrossRefGoogle Scholar
  52. Wetzel, R. G. (1983). Limnology. Philadelphia, PA: Saunders College Publishing.Google Scholar
  53. Wilkes, G., Edge, T. A., Gannon, V. P. J., Jokinen, C., Lyautey, E., Medeiros, D., et al. (2009). Seasonal relationships among indicator bacteria, pathogenic bacteria, cryptosporidium oocysts, giardia cysts, and hydrological indices for surface waters within an agricultural landscape. Water Research, 43(8), 2209–2223.  https://doi.org/10.1016/j.watres.2009.01.033.CrossRefGoogle Scholar
  54. Wilkes, G., Edge, T. A., Gannon, V. P. J., Jokinen, C., Lyautey, E., Neumann, N. F., Ruecker, N., Scott, A., Sunohara, M., Topp, E., & Lapen, D. R. (2011). Associations among pathogenic bacteria, parasites, and environmental and land use factors in multiple mixed-use watersheds. Water Research, 45(18), 5807–5825.  https://doi.org/10.1016/j.watres.2011.06.021.CrossRefGoogle Scholar
  55. Wilkes, G., Ruecker, N., Neumann, N., Gannon, V., Jokinen, C., Sunohara, M., Topp, E., Pintar, K., Edge, T., & Lapen, D. (2013). Spatiotemporal analysis of cryptosporidium species/genotypes and relationships with other zoonotic pathogens in surface water from mixed-use watersheds. Applied and Environmental Microbiology, 79(2), 434–448.CrossRefGoogle Scholar
  56. YSI (2010). Calibration, maintenance and troubleshooting tips for YSI 6-series sondes and sensors. (pp. 39): YSI.Google Scholar
  57. Zamyadi, A., Choo, F., Newcombe, G., Stuetz, R., & Henderson, R. K. (2016). A review of monitoring technologies for real-time management of cyanobacteria: recent advances and future direction. TrAC Trends in Analytical Chemistry, 85(Part A), 83–96.  https://doi.org/10.1016/j.trac.2016.06.023.CrossRefGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  • K. Zolfaghari
    • 1
  • G. Wilkes
    • 1
  • S. Bird
    • 2
  • D. Ellis
    • 1
  • K. D. M. Pintar
    • 3
  • N. Gottschall
    • 1
  • H. McNairn
    • 1
  • D. R. Lapen
    • 1
    Email author
  1. 1.Agriculture and Agri-Food CanadaOttawaCanada
  2. 2.Fluvial Systems Research Inc.White RockCanada
  3. 3.Natural Resources CanadaOttawaCanada

Personalised recommendations