Advertisement

Dynamics of dissolved greenhouse gas response to seasonal water mixing in subtropical reservoirs

  • Zhenglun Yang
  • Changyuan TangEmail author
  • Xing LiEmail author
  • Han Zhang
  • Yangyang Cai
Article
  • 203 Downloads

Abstract

Although indispensable, significant uncertainty still exists in the underlying processes of the formation, dynamics, and emission of greenhouse gases (GHGs), the critical elements needed for the accurate estimation of greenhouse gas fluxes in inland lakes and reservoirs. Seasonal changes in water thermal stratification and turbulence strongly influence the concentration and emission of dissolved GHGs in water columns. Here, we studied the stratification and overturn processes of water column in the subtropical Lianhe Reservoir during different seasons and determined the dynamics of dissolved CO2, CH4, and N2O in the reservoir. Observation of temperature and analysis of chlorofluorocarbons (CFCs) clearly suggested that stratification of water column occurred in summer, but not in winter. The results showed that while dissolved oxygen (DO) was high in the top 5-m layer (the upper epilimnion layer), it dropped considerably especially below 10 m, resulting in an increase in concentration of CO2 and CH4. The high concentrations of dissolved N2O and CH4 were related to the decomposition of organic matter in the hypolimnion layer under anaerobic conditions after stratification. In winter overturn period, vertical circulants of water not only homogenized the concentration of DO in the water column, but also potentially moved CO2, CH4, and N2O from the bottom to the surface of the reservoir. The estimated GHG flux from the reservoir was − 7.13 mmol m−2 day−1 in summer and 2.14 mmol m−2 day−1 in winter. There was the potential that CO2 fluxes from subtropical lakes and reservoirs are overestimated by traditional geochemical models.

Keywords

Subtropical reservoir Greenhouse gas CFCs Thermal stratification Vertical water and material flow 

Notes

Acknowledgments

The authors would like to thank Yingjie Cao in the School of Environmental Science and Engineering of Sun Yat-sen University for his help in the field work. Zhenglun Yang also gained financial supported from the TAKASE Scholarship Foundation and International Kyowa Scholarship Foundation.

Funding information

This study was supported partly by the National Natural Science Foundation of China (No. 41877470) and the Natural Science Foundation of Guangdong Province, China (No. 2017A030313229).

References

  1. Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Ochieng Omengo, F., Geeraert, N., Deirmendjian, L., Polsenaere, P., & Borges, A. V. (2015). Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences, 12(1), 67–78.  https://doi.org/10.5194/bg-12-67-2015.CrossRefGoogle Scholar
  2. Adamczyk, E. M., & Shurin, J. B. (2015). Seasonal changes in plankton food web structure and carbon dioxide flux from southern California reservoirs. PLoS One, 10(10), e0140464.CrossRefGoogle Scholar
  3. Adrian, R., O'Reilly, C. M., Zagarese, H., Baines, S. B., Hessen, D. O., Wendel, K., et al. (2009). Lakes as sentinels of climate change. Limnology and Oceanography, 54(6part2), 2283–2297.  https://doi.org/10.4319/lo.2009.54.6_part_2.2283.CrossRefGoogle Scholar
  4. Alcântara, E. H., Stech, J. L., Lorenzzetti, J. A., Bonnet, M. P., Casamitjana, X., Assireu, A. T., & Novo, E. M. L. M. (2010). Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir. Remote Sensing of Environment, 114(11), 2651–2665.  https://doi.org/10.1016/j.rse.2010.06.002.CrossRefGoogle Scholar
  5. Arend, K. K., Beletsky, D., DePINTO, J. V., Ludsin, S. A., Roberts, J. J., Rucinski, D. K., et al. (2011). Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie. Freshwater Biology, 56(2), 366–383.  https://doi.org/10.1111/j.1365-2427.2010.02504.x.CrossRefGoogle Scholar
  6. Balmer, M. B., & Downing, J. A. (2011). Carbon dioxide concentrations in eutrophic lakes: undersaturation implies atmospheric uptake. Inland Waters, 1(2), 125–132.CrossRefGoogle Scholar
  7. Banerjee, M., Mukherjee, J., & Ray, S. (2017). A review on reservoir system and its ecology in Indian perspective. Proceedings of the Zoological Society, 70(1), 5–20.  https://doi.org/10.1007/s12595-016-0165-z.CrossRefGoogle Scholar
  8. Bartyzel, J., & Rozanski, K. (2016). Dating of young groundwater using four anthropogenic trace gases (SF6, SF5CF3, CFC-12 and Halon-1301): methodology and first results. Isotopes Environ Health Stud, 52(4-5), 393–404.  https://doi.org/10.1080/10256016.2015.1135137.CrossRefGoogle Scholar
  9. Bastviken, D., Cole, J. J., Pace, M. L., & Van de Bogert, M. C. (2008). Fates of methane from different lake habitats: connecting whole-lake budgets and CH4 emissions. Journal of Geophysical Research: Biogeosciences, 113(G2).  https://doi.org/10.1029/2007JG00060.
  10. Beaulieu, M., Pick, F., & Gregory-Eaves, I. (2013). Nutrients and water temperature are significant predictors of cyanobacterial biomass in a 1147 lakes data set. Limnology and Oceanography, 58(5), 1736–1746.  https://doi.org/10.4319/lo.2013.58.5.1736.CrossRefGoogle Scholar
  11. Beaulieu, J. J., Smolenski, R. L., Nietch, C. T., Townsend-Small, A., Elovitz, M. S., & Schubauer-Berigan, J. P. (2014). Denitrification alternates between a source and sink of nitrous oxide in the hypolimnion of a thermally stratified reservoir. Limnology and Oceanography, 59(2), 495–506.  https://doi.org/10.4319/lo.2014.59.2.0495.CrossRefGoogle Scholar
  12. Beaulieu, J. J., Nietch, C. T., & Young, J. L. (2015). Controls on nitrous oxide production and consumption in reservoirs of the Ohio River Basin. Journal of Geophysical Research: Biogeosciences, 120(10), 1995–2010.  https://doi.org/10.1002/2015jg002941.CrossRefGoogle Scholar
  13. Beaulieu, J. J., DelSontro, T., & Downing, J. A. (2019). Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nature communications, 10(1), 1375.  https://doi.org/10.1038/s41467-019-09100-5.CrossRefGoogle Scholar
  14. Boehrer, B., & Schultze, M. (2008). Stratification of lakes. Reviews of Geophysics, 46(2).Google Scholar
  15. Borges, A. V., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Geeraert, N., et al. (2015). Globally significant greenhouse-gas emissions from African inland waters. Nature Geoscience, 8, 637.  https://doi.org/10.1038/ngeo2486.CrossRefGoogle Scholar
  16. Bouffard, D., & Wüest, A. (2018). Mixing in stratified lakes and reservoirs. In H. J. H. Clercx & G. F. Van Heijst (Eds.), Mixing and dispersion in flows Dominated by Rotation and Buoyancy (pp. 61–88). Cham: Springer International Publishing.CrossRefGoogle Scholar
  17. Bullister, J. L., & Weiss, R. F. (1988). Determination of CCl3F and CCl2F2 in seawater and air. Deep-Sea Research Part a-Oceanographic Research Papers, 35, 839–853.  https://doi.org/10.1016/0198-0149(88)90033-7.CrossRefGoogle Scholar
  18. ​Busenberg, E., Plummer, L. N. (1992). Use of chlorofluorocarbons (CCl3F and CCl2F2) as hydrologic tracers and age‐dating tools: The alluvium and terrace system of central Oklahoma. Water Resources Research, 28(9), 2257–2283.  https://doi.org/10.1029/92WR01263 CrossRefGoogle Scholar
  19. Busenberg, E., & Plummer, L. N. (2008). Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2(CFC-12). Water Resources Research, 44(2), n/a–n/a.  https://doi.org/10.1029/2007wr006150.
  20. Butcher, J. B., Nover, D., Johnson, T. E., & Clark, C. M. (2015). Sensitivity of lake thermal and mixing dynamics to climate change. Climatic Change, 129(1), 295–305.  https://doi.org/10.1007/s10584-015-1326-1.CrossRefGoogle Scholar
  21. Chambers, L. A., Gooddy, D. C., & Binley, A. M. (2018). Use and application of CFC-11, CFC-12, CFC-113 and SF6 as environmental tracers of groundwater residence time: A review. Geoscience Frontiers.  https://doi.org/10.1016/j.gsf.2018.02.017.CrossRefGoogle Scholar
  22. Cole, J. J., Caraco, N. F., Kling, G. W., & Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes. Science-AAAS-Weekly Paper Edition, 265(5178), 1568–1569.  https://doi.org/10.1126/science.265.5178.1568.CrossRefGoogle Scholar
  23. Cole, J., Nina, J., & Caraco, F. (1998). Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnology and Oceanography, 43, 647–656.  https://doi.org/10.4319/lo.1998.43.4.0647.CrossRefGoogle Scholar
  24. Czikowsky, M. J., MacIntyre, S., Tedford, E. W., Vidal, J., & Miller, S. D. (2018). Effects of wind and buoyancy on carbon dioxide distribution and air-water flux of a stratified temperate lake. Journal of Geophysical Research: Biogeosciences, 123(8), 2305–2322.  https://doi.org/10.1029/2017jg004209.CrossRefGoogle Scholar
  25. Deemer, B. R., Harrison, J. A., Li, S., Beaulieu, J. J., DelSontro, T., Barros, N., Bezerra-Neto, J. F., Powers, S. M., dos Santos, M. A., & Vonk, J. A. (2016). Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. BioScience, 66(11), 949–964.  https://doi.org/10.1093/biosci/biw117.CrossRefGoogle Scholar
  26. Deininger, A., Faithfull, C. L., Karlsson, J., Klaus, M., & Bergström, A.-K. (2017). Pelagic food web response to whole lake N fertilization. Limnology and Oceanography, 62(4), 1498–1511.  https://doi.org/10.1002/lno.10513.CrossRefGoogle Scholar
  27. DelSontro, T., Beaulieu, J. J., & Downing, J. A. (2018). Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnology and Oceanography Letters, 3(3), 64–75.  https://doi.org/10.1002/lol2.10073.CrossRefGoogle Scholar
  28. DeVries, T., Holzer, M., & Primeau, F. (2017). Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning. Nature, 542, 215–218.  https://doi.org/10.1038/nature21068.CrossRefGoogle Scholar
  29. Dlugokencky, E., Lang, P., Masarie, K., Crotwell, A., & Crotwell, M. (2015). Atmospheric carbon dioxide dry air mole fractions from the NOAA ESRL Carbon Cycle Cooperative Global Air Sampling Network, 1968–2014. NOAA ESRL Global Monitoring Division, Boulder, CO, USA. Google Scholar
  30. Dong, J., Speer, K., & Jullion, L. (2016). The antarctic slope current near 30°E. Journal of Geophysical Research: Oceans, 121(2), 1051–1062.  https://doi.org/10.1002/2015jc011099.CrossRefGoogle Scholar
  31. Dos Santos, M. A., Rosa, L. P., Sikar, B., Sikar, E., & Dos Santos, E. O. (2006). Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy, 34(4), 481–488.  https://doi.org/10.1016/j.enpol.2004.06.015.CrossRefGoogle Scholar
  32. Duan, X., Wang, X., Mu, Y., & Ouyang, Z. (2005). Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment, 39(25), 4479–4487.  https://doi.org/10.1016/j.atmosenv.2005.03.045.CrossRefGoogle Scholar
  33. Fang, F., Gao, Y., Gan, L., He, X., & Yang, L. (2018). Effects of different initial pH and irradiance levels on cyanobacterial colonies from Lake Taihu, China. Journal of Applied Phycology, 30(3), 1777–1793.  https://doi.org/10.1007/s10811-018-1394-5.CrossRefGoogle Scholar
  34. Fukushima, T., Matsushita, B., Subehi, L., Setiawan, F., & Wibowo, H. (2017). Will hypolimnetic waters become anoxic in all deep tropical lakes? Scientific Reports, 7.  https://doi.org/10.1038/srep45320.
  35. Gagliardi, L. M., Brighenti, L. S., Staehr, P. A., Barbosa, F. A. R., & Bezerra-Neto, J. F. (2019). Reduced rainfall increases metabolic rates in upper mixed layers of tropical lakes. Ecosystems.  https://doi.org/10.1007/s10021-019-00346-0.CrossRefGoogle Scholar
  36. Gerardo-Nieto, O., Astorga-España, M. S., Mansilla, A., & Thalasso, F. (2017). Initial report on methane and carbon dioxide emission dynamics from sub-Antarctic freshwater ecosystems: a seasonal study of a lake and a reservoir. Science of the Total Environment, 593-594, 144–154.  https://doi.org/10.1016/j.scitotenv.2017.02.144.CrossRefGoogle Scholar
  37. Gruca-Rokosz, R., & Tomaszek, J. A. (2015). Methane and carbon dioxide in the sediment of a eutrophic reservoir: production pathways and diffusion fluxes at the sediment–water Interface. Water, Air, & Soil Pollution, 226(2), 16.  https://doi.org/10.1007/s11270-014-2268-3.CrossRefGoogle Scholar
  38. Gu, B., Schelske, C. L., & Coveney, M. F. (2011). Low carbon dioxide partial pressure in a productive subtropical lake. Aquatic sciences, 73(3), 317–330.  https://doi.org/10.1007/s00027-010-0179-y.CrossRefGoogle Scholar
  39. Guérin, F., Abril, G., Richard, S., Burban, B., Reynouard, C., Seyler, P., et al. (2006). Methane and carbon dioxide emissions from tropical reservoirs: significance of downstream rivers. Geophysical Research Letters, 33(21), n/a–n/a.  https://doi.org/10.1029/2006GL027929.
  40. Haase, K. B., & Busenberg, E. (2013). Groundwater dating with atmospheric halogenated compounds. In W. J. Rink & J. Thompson (Eds.), Encyclopedia of Scientific Dating Methods (pp. 1–17). Dordrecht: Springer Netherlands.Google Scholar
  41. Hamilton, D. P., Magee, M. R., Wu, C. H., & Kratz, T. K. (2018). Ice cover and thermal regime in a dimictic seepage lake under climate change. Inland Waters, 8(3), 381–398.  https://doi.org/10.1080/20442041.2018.1505372.CrossRefGoogle Scholar
  42. Hansen, A. M., Hernández-Martínez, C., & Falcón-Rojas, A. (2017). Evaluation of eutrophication control through hypolimnetic oxygenation. Procedia Earth and Planetary Science, 17, 598–601.  https://doi.org/10.1016/j.proeps.2016.12.159.CrossRefGoogle Scholar
  43. Harrison, J. A., Deemer, B. R., Birchfield, M. K., & O’Malley, M. T. (2017). Reservoir water-level drawdowns accelerate and amplify methane emission. Environmental Science & Technology, 51(3), 1267–1277.  https://doi.org/10.1021/acs.est.6b03185.CrossRefGoogle Scholar
  44. Holgerson, M. A., & Raymond, P. A. (2016). Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience, 9(3), 222–226.  https://doi.org/10.1038/ngeo2654.CrossRefGoogle Scholar
  45. Horneman, A., Stute, M., Schlosser, P., Smethie, W., Santella, N., Ho, D. T., et al. (2008). Degradation rates of CFC-11, CFC-12 and CFC-113 in anoxic shallow aquifers of Araihazar, Bangladesh. Journal of Contaminant Hydrology, 97(1), 27–41.  https://doi.org/10.1016/j.jconhyd.2007.12.001.CrossRefGoogle Scholar
  46. Huang, T., Li, X., Rijnaarts, H., Grotenhuis, T., Ma, W., Sun, X., & Xu, J. (2014). Effects of storm runoff on the thermal regime and water quality of a deep, stratified reservoir in a temperate monsoon zone, in Northwest China. Science of the Total Environment, 485-486, 820–827.  https://doi.org/10.1016/j.scitotenv.2014.01.008.CrossRefGoogle Scholar
  47. Hutchinson, G. E. (1957). A treatise on. Limnology, 1.Google Scholar
  48. Huttunen, J. T., Alm, J., Liikanen, A., Juutinen, S., Larmola, T., Hammar, T., Silvola, J., & Martikainen, P. J. (2003). Fluxes of methane, carbon dioxide and nitrous oxide in boreal lakes and potential anthropogenic effects on the aquatic greenhouse gas emissions. Chemosphere, 52(3), 609–621.  https://doi.org/10.1016/s0045-6535(03)00243-1.CrossRefGoogle Scholar
  49. Jansson, M., Olsson, H., & Pettersson, K. (1988). Phosphatases; origin, characteristics and function in lakes. In Dordrecht, 1988 (pp. 157–175, Phosphorus in Freshwater Ecosystems). Springer Netherlands.  https://doi.org/10.1007/978-94-009-3109-1_10.CrossRefGoogle Scholar
  50. Jansson, M., Karlsson, J., & Jonsson, A. (2012). Carbon dioxide supersaturation promotes primary production in lakes. Ecology letters, 15(6), 527–532.  https://doi.org/10.1111/j.1461-0248.2012.01762.x.CrossRefGoogle Scholar
  51. Jeppesen, E., Brucet, S., Naselli-Flores, L., Papastergiadou, E., Stefanidis, K., Nõges, T., Nõges, P., Attayde, J. L., Zohary, T., Coppens, J., Bucak, T., Menezes, R. F., Freitas, F. R. S., Kernan, M., Søndergaard, M., & Beklioğlu, M. (2015). Ecological impacts of global warming and water abstraction on lakes and reservoirs due to changes in water level and related changes in salinity. Hydrobiologia, 750(1), 201–227.  https://doi.org/10.1007/s10750-014-2169-x.CrossRefGoogle Scholar
  52. Jiang, X., Zhang, L., Yao, X., Xu, H., & Li, M. (2017). Greenhouse gas flux at reservoirs of Jiangxi Province and its influencing factors. Journal of Lake Sciences, 29(4), 1000–1008.CrossRefGoogle Scholar
  53. Kashiwaya, K., Hasegawa, T., Nakata, K., Tomioka, Y., & Mizuno, T. (2015). Multiple tracer study in Horonobe, northern Hokkaido, Japan: 2. Depletion of chlorofluorocarbons (CFCs) estimated using 3H/3He index and lumped parameter models. Journal of Hydrology, 524, 111–122.  https://doi.org/10.1016/j.jhydrol.2015.02.016.CrossRefGoogle Scholar
  54. Kim, S. Y., Veraart, A. J., Meima-Franke, M., & Bodelier, P. L. E. (2015). Combined effects of carbon, nitrogen and phosphorus on CH4 production and denitrification in wetland sediments. Geoderma, 259-260, 354–361.  https://doi.org/10.1016/j.geoderma.2015.03.015.CrossRefGoogle Scholar
  55. Kolb, B. (1999). Headspace sampling with capillary columns. Journal of Chromatography A, 842(1), 163–205.  https://doi.org/10.1016/S0021-9673(99)00073-4.CrossRefGoogle Scholar
  56. Kreling, J., Bravidor, J., Engelhardt, C., Hupfer, M., Koschorreck, M., & Lorke, A. (2017). The importance of physical transport and oxygen consumption for the development of a metalimnetic oxygen minimum in a lake. Limnology and Oceanography, 62(1), 348–363.  https://doi.org/10.1002/lno.10430.CrossRefGoogle Scholar
  57. Kumar, A., Yang, T., & Sharma, M. P. (2019). Greenhouse gas measurement from Chinese freshwater bodies: a review. Journal of Cleaner Production, 233, 368–378.  https://doi.org/10.1016/j.jclepro.2019.06.052.CrossRefGoogle Scholar
  58. Lee, H. W., Kim, E. J., Park, S. S., & Choi, J. H. (2012). Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area. Climatic Change, 112(3), 859–880.  https://doi.org/10.1007/s10584-011-0233-3.CrossRefGoogle Scholar
  59. Lennon, J. T. (2004). Experimental evidence that terrestrial carbon subsidies increase CO2 flux from lake ecosystems. Oecologia, 138(4), 584–591.  https://doi.org/10.1007/s00442-003-1459-1.CrossRefGoogle Scholar
  60. León, J. G., Beamud, S. G., Temporetti, P. F., Atencio, A. G., Diaz, M. M., & Pedrozo, F. L. (2016). Stratification and residence time as factors controlling the seasonal variation and the vertical distribution of chlorophyll-a in a subtropical irrigation reservoir. International Review of Hydrobiology, 101(1-2), 36–47.  https://doi.org/10.1002/iroh.201501811.CrossRefGoogle Scholar
  61. Lewis, W. M. (2000). Basis for the protection and management of tropical lakes. Lakes & Reservoirs: Research & Management, 5(1), 35–48.  https://doi.org/10.1046/j.1440-1770.2000.00091.x.CrossRefGoogle Scholar
  62. Li, Q., Lin, Q., & Han, B. (2005). Conductivity distribution of water supply reservoirs in Guangdong province. Ecology and Environmnet, 14(1), 16–20.Google Scholar
  63. Li, Z., Zhu, D., Chen, Y., Fang, X., Liu, Z., & Ma, W. (2016). Simulating and understanding effects of water level fluctuations on thermal regimes in Miyun Reservoir. Hydrological Sciences Journal, 61(5), 952–969.  https://doi.org/10.1080/02626667.2014.983517.CrossRefGoogle Scholar
  64. Li, S., Bush, R. T., Santos, I. R., Zhang, Q., Song, K., Mao, R., Wen, Z., & Lu, X. X. (2018). Large greenhouse gases emissions from China’s lakes and reservoirs. Water Research, 147, 13–24.  https://doi.org/10.1016/j.watres.2018.09.053.CrossRefGoogle Scholar
  65. Liu, X.-L., Liu, C.-Q., Li, S.-L., Wang, F.-S., Wang, B.-L., & Wang, Z.-L. (2011a). Spatiotemporal variations of nitrous oxide (N2O) emissions from two reservoirs in SW China. Atmospheric Environment, 45(31), 5458–5468.  https://doi.org/10.1016/j.atmosenv.2011.06.074.CrossRefGoogle Scholar
  66. Liu, Y., Zhu, R., Ma, D., Xu, H., Luo, Y., Huang, T., & Sun, L. (2011b). Temporal and spatial variations of nitrous oxide fluxes from the littoral zones of three alga-rich lakes in coastal Antarctica. Atmospheric Environment, 45(7), 1464–1475.  https://doi.org/10.1016/j.atmosenv.2010.12.017.CrossRefGoogle Scholar
  67. Liu, W., Wang, Z., Zhang, Q., Cheng, X., Lu, J., & Liu, G. (2015). Sediment denitrification and nitrous oxide production in Chinese plateau lakes with varying watershed land uses. Biogeochemistry, 123(3), 379–390.  https://doi.org/10.1007/s10533-015-0072-9.CrossRefGoogle Scholar
  68. Liu, H., Zhang, Q., Katul, G. G., Cole, J. J., Chapin, F. S., III, & MacIntyre, S. (2016). Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environmental Research Letters, 11(6), 064001.  https://doi.org/10.1088/1748-9326/11/6/064001.CrossRefGoogle Scholar
  69. Luoto, T. P., Rantala, M. V., Henriikka Kivilä, E., & Nevalainen, L. (2019). Recent changes in chironomid communities and hypolimnetic oxygen conditions relate to organic carbon in subarctic ecotonal lakes. Science of the Total Environment, 646, 238–244.  https://doi.org/10.1016/j.scitotenv.2018.07.306.CrossRefGoogle Scholar
  70. MacIntyre, S., Flynn, K. M., Jellison, R., & Romero, J. R. (1999). Boundary mixing and nutrient fluxes in Mono Lake, California. Limnology and Oceanography, 44(3), 512–529.  https://doi.org/10.4319/lo.1999.44.3.0512.CrossRefGoogle Scholar
  71. Magee, M. R., & Wu, C. H. (2017). Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21(12), 6253–6274.  https://doi.org/10.5194/hess-21-6253-2017.CrossRefGoogle Scholar
  72. Marcon, L., Bleninger, T., Männich, M., & Hilgert, S. (2019). High-frequency measurements of gas ebullition in a Brazilian subtropical reservoir—identification of relevant triggers and seasonal patterns. Environmental monitoring and assessment, 191(6), 357.  https://doi.org/10.1007/s10661-019-7498-9.CrossRefGoogle Scholar
  73. Moss, B., Kosten, S., Meerhof, M., Battarbee, R., Jeppesen, E., Mazzeo, N., et al. (2011). Allied attack: climate change and eutrophication. Inland Waters, 1(2), 101–105.  https://doi.org/10.5268/IW-1.2.359.CrossRefGoogle Scholar
  74. Musenze, R. S., Grinham, A., Werner, U., Gale, D., Sturm, K., Udy, J., & Yuan, Z. (2014). Assessing the spatial and temporal variability of diffusive methane and nitrous oxide emissions from subtropical freshwater reservoirs. Environmental Science & Technology, 48(24), 14499–14507.  https://doi.org/10.1021/es505324h.CrossRefGoogle Scholar
  75. Musenze, R. S., Fan, L., Grinham, A., Werner, U., Gale, D., Udy, J., & Yuan, Z. (2016). Methane dynamics in subtropical freshwater reservoirs and the mediating microbial communities. Biogeochemistry, 128(1), 233–255.  https://doi.org/10.1007/s10533-016-0206-8.CrossRefGoogle Scholar
  76. Owens, E. M., Effler, S. W., & Trama, F. (1986). Variability in thermal stratification in a reservoir. JAWRA Journal of the American Water Resources Association, 22(2), 219–227.  https://doi.org/10.1111/j.1752-1688.1986.tb01878.x.CrossRefGoogle Scholar
  77. Padisk, J., Barbosa, F., Koschel, R., & Krienitz, L. (2003). Deep layer cyanoprokaryota maxima are constitutional features of lakes: examples from temperate and tropical regions. Archiv fr HydrobiologieSpecial Issues Advances in Limnology, 58, 175199.Google Scholar
  78. Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57–58.CrossRefGoogle Scholar
  79. Powley, H. R., Krom, M. D., & Van Cappellen, P. (2016). Circulation and oxygen cycling in the Mediterranean Sea: sensitivity to future climate change. Journal of Geophysical Research: Oceans, 121(11), 8230–8247.  https://doi.org/10.1002/2016jc012224.CrossRefGoogle Scholar
  80. Prairie, Y. T., Alm, J., Beaulieu, J., Barros, N., Battin, T., Cole, J., del Giorgio, P., DelSontro, T., Guérin, F., Harby, A., Harrison, J., Mercier-Blais, S., Serça, D., Sobek, S., & Vachon, D. (2018). Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems, 21(5), 1058–1071.  https://doi.org/10.1007/s10021-017-0198-9.CrossRefGoogle Scholar
  81. Rantakari, M., Heiskanen, J., Mammarella, I., Tulonen, T., Linnaluoma, J., Kankaala, P., & Ojala, A. (2015). Different apparent gas exchange coefficients for CO2 and CH4: Comparing a brown-water and a clear-water lake in the boreal zone during the whole growing season. Environmental Science & Technology, 49(19), 11388–11394.  https://doi.org/10.1021/acs.est.5b01261.CrossRefGoogle Scholar
  82. Rasilo, T., Prairie, Y. T., & del Giorgio, P. A. (2015). Large-scale patterns in summer diffusive CH4 fluxes across boreal lakes, and contribution to diffusive C emissions. Global Change Biology, 21(3), 1124–1139.  https://doi.org/10.1111/gcb.12741.CrossRefGoogle Scholar
  83. Raymond, P. A., Hartmann, J., Lauerwald, R., Sobek, S., McDonald, C., Hoover, M., et al. (2013). Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355.  https://doi.org/10.1038/nature12760.CrossRefGoogle Scholar
  84. Rietl, A. J., Nyman, J. A., Lindau, C. W., & Jackson, C. R. (2017). Wetland methane emissions altered by vegetation disturbance: an interaction between stem clipping and nutrient enrichment. Aquatic Botany, 136, 205–211.  https://doi.org/10.1016/j.aquabot.2016.10.008.CrossRefGoogle Scholar
  85. Rocha, M. I. A., Recknagel, F., Minoti, R. T., Huszar, V. L. M., Kozlowsky-Suzuki, B., Cao, H., Starling, F. L. R. M., & Branco, C. W. C. (2019). Assessing the effect of abiotic variables and zooplankton on picocyanobacterial dominance in two tropical mesotrophic reservoirs by means of evolutionary computation. Water Research, 149, 120–129.  https://doi.org/10.1016/j.watres.2018.10.067.CrossRefGoogle Scholar
  86. Rodriguez, M., & Casper, P. (2018). Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 18(7), 1901–1912.  https://doi.org/10.1007/s10113-018-1289-7.CrossRefGoogle Scholar
  87. Roland, F. A., Darchambeau, F., Morana, C., Bouillon, S., & Borges, A. V. (2017). Emission and oxidation of methane in a meromictic, eutrophic and temperate lake (Dendre, Belgium). Chemosphere, 168, 756–764.  https://doi.org/10.1016/j.chemosphere.2016.10.138.CrossRefGoogle Scholar
  88. Rosa, L. P., & Dos Santos, M. A. (2000). Certainty and uncertainty in the science of greenhouse gas emissions from hydroelectric reservoirs. WCD Thematic Review Environmental Issues II, 2.Google Scholar
  89. Rosa, L. P., Dos Santos, M. A., Matvienko, B., Dos Santos, E. O., & Sikar, E. (2004). Greenhouse gas emissions from hydroelectric reservoirs in tropical regions. Climatic Change, 66(1), 9–21.  https://doi.org/10.1023/B:CLIM.0000043158.52222.ee.CrossRefGoogle Scholar
  90. Salk, K. R., Ostrom, P. H., Biddanda, B. A., Weinke, A. D., Kendall, S. T., & Ostrom, N. E. (2016). Ecosystem metabolism and greenhouse gas production in a mesotrophic northern temperate lake experiencing seasonal hypoxia. Biogeochemistry, 131(3), 303–319.  https://doi.org/10.1007/s10533-016-0280-y.CrossRefGoogle Scholar
  91. Sander, R. (1999). Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Germany: Max-Planck Institute of Chemistry, Air Chemistry Department Mainz.Google Scholar
  92. Sarmiento, J. L. (2013). Ocean biogeochemical dynamics. Princeton University Press.Google Scholar
  93. Scherrer, K. J. N., Kortsch, S., Varpe, Ø., Weyhenmeyer, G. A., Gulliksen, B., & Primicerio, R. (2019). Mechanistic model identifies increasing light availability due to sea ice reductions as cause for increasing macroalgae cover in the Arctic. Limnology and Oceanography, 64(1), 330–341.  https://doi.org/10.1002/lno.11043.CrossRefGoogle Scholar
  94. Schwab, D. J., & Beletsky, D. (2003). Relative effects of wind stress curl, topography, and stratification on large-scale circulation in Lake Michigan. Journal of Geophysical Research: Oceans, 108(C2).  https://doi.org/10.1029/2001JC001066.CrossRefGoogle Scholar
  95. Sharip, Z., Shah, S. A., Jamin, A., & Jusoh, J. (2018). Assessing the hydrodynamic pattern in different lakes of Malaysia. In Applications in Water Systems Management and Modeling: IntechOpen.Google Scholar
  96. Soballe, D., & Kimmel, B. (1987). A large-scale comparison of factors influencing phytoplankton abundance in rivers, lakes, and impoundments. Ecology, 68(6), 1943–1954.  https://doi.org/10.2307/1939885.CrossRefGoogle Scholar
  97. Soumis, N., Duchemin, É., Canuel, R., & Lucotte, M. (2004). Greenhouse gas emissions from reservoirs of the western United States. Global Biogeochemical Cycles, 18(3), n/a–n/a.  https://doi.org/10.1029/2003gb002197.CrossRefGoogle Scholar
  98. Soumis, N., Canuel, R., & Lucotte, M. (2008). Evaluation of two current approaches for the measurement of carbon dioxide diffusive fluxes from lentic ecosystems. Environmental Science & Technology, 42(8), 2964–2969.  https://doi.org/10.1021/es702361s.CrossRefGoogle Scholar
  99. Stainsby, E., Winter, J., Jarjanazi, H., Paterson, A., Evans, D., & Young, J. (2011). Changes in the thermal stability of Lake Simcoe from 1980 to 2008. Journal of Great Lakes Research, 37, 55–62.  https://doi.org/10.1016/j.jglr.2011.04.00.CrossRefGoogle Scholar
  100. Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., et al. (2013). Climate change 2013: The physical science basis. Cambridge: Cambridge University Press.Google Scholar
  101. Sturm, K., Yuan, Z., Gibbes, B., Werner, U., & Grinham, A. (2014). Methane and nitrous oxide sources and emissions in a subtropical freshwater reservoir, South East Queensland, Australia. Biogeosciences, 11(18), 5245–5258.  https://doi.org/10.5194/bg-11-5245-2014.CrossRefGoogle Scholar
  102. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., et al. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2), 2298–2314.  https://doi.org/10.4319/lo.2009.54.6_part_2.2298.CrossRefGoogle Scholar
  103. Tremblay, A., Lambert, M., & Gagnon, L. (2004). Do hydroelectric reservoirs emit greenhouse gases? Environmental Management, 33(1), S509–S517.  https://doi.org/10.1007/s00267-003-9158-6.CrossRefGoogle Scholar
  104. Tremblay, A., Therrien, J., Hamlin, B., Wichmann, E., & LeDrew, L. J. (2005). GHG emissions from boreal reservoirs and natural aquatic ecosystems. Greenhouse gas emissions—fluxes and processes, 209–232.  https://doi.org/10.1007/978-3-540-26643-3_9.CrossRefGoogle Scholar
  105. Vachon, D., Langenegger, T., Donis, D., & McGinnis, D. F. (2019). Influence of water column stratification and mixing patterns on the fate of methane produced in deep sediments of a small eutrophic lake. Limnology and Oceanography.  https://doi.org/10.1002/lno.11172.CrossRefGoogle Scholar
  106. Vaquer-Sunyer, R., & Duarte, C. M. (2008). Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences, 105(40), 15452–15457.  https://doi.org/10.1073/pnas.0803833105.CrossRefGoogle Scholar
  107. Verspagen, J. M., Van de Waal, D. B., Finke, J. F., Visser, P. M., Van Donk, E., & Huisman, J. (2014). Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One, 9(8), e104325.  https://doi.org/10.1371/journal.pone.0140464.CrossRefGoogle Scholar
  108. Vieira, F. C. B., Pereira, A. B., Bayer, C., Schünemann, A. L., de Carvalho Victoria, F., de Albuquerque, M. P., et al. (2013). In situ methane and nitrous oxide fluxes in soil from a transect in Hennequin Point, King George Island, Antarctic. Chemosphere, 90(2), 497–504.  https://doi.org/10.1016/j.chemosphere.2012.08.013.CrossRefGoogle Scholar
  109. Walker, J. F., Saad, D. A., & Hunt, R. J. (2007). Dynamics of CFCs in northern temperate lakes and adjacent groundwater. Water Resources Research, 43(4).  https://doi.org/10.1029/2005WR004647.
  110. Wang, S. (2010). Diurnal variation in the concentration of greenhouse gases (CO2,CH4 AND N2O) in the Meiliang Bay of the Taihu Lake. Quaternary Sciences, 30(6), 1186–1192.  https://doi.org/10.3969/j.issn.1001-7410.2010.06.16.CrossRefGoogle Scholar
  111. Wang, S., Liu, C., Yeager, K. M., Wan, G., Li, J., Tao, F., Lǚ, Y., Liu, F., & Fan, C. (2009). The spatial distribution and emission of nitrous oxide (N2O) in a large eutrophic lake in eastern China: anthropogenic effects. Science of the Total Environment, 407(10), 3330–3337.  https://doi.org/10.1016/j.scitotenv.2008.10.037.CrossRefGoogle Scholar
  112. Wang, F., Wang, B., Liu, C.-Q., Wang, Y., Guan, J., Liu, X., & Yu, Y. (2011a). Carbon dioxide emission from surface water in cascade reservoirs–river system on the Maotiao River, southwest of China. Atmospheric Environment, 45(23), 3827–3834.  https://doi.org/10.1016/j.atmosenv.2011.04.014.CrossRefGoogle Scholar
  113. Wang, S., Qian, X., Han, B.-P., Wang, Q.-H., & Ding, Z.-F. (2011b). Physical limnology of a typical subtropical reservoir in south China. Lake and Reservoir Management, 27(2), 149–161.  https://doi.org/10.1080/07438141.2011.573613.CrossRefGoogle Scholar
  114. Wang, S., Wang, L., Zheng, Y., Chen, Z.-B., Yang, Y., Lin, H.-J., Yang, X. Q., & Wang, T. T. (2019). Application of mass-balance modelling to assess the effects of ecological restoration on energy flows in a subtropical reservoir, China. Science of the Total Environment, 664, 780–792.  https://doi.org/10.1016/j.scitotenv.2019.01.334.CrossRefGoogle Scholar
  115. Wanninkhof, R. (1992). Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research: Oceans, 97(C5), 7373–7382.  https://doi.org/10.1029/92JC00188.CrossRefGoogle Scholar
  116. Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(6), 351–362.  https://doi.org/10.4319/lom.2014.12.351.CrossRefGoogle Scholar
  117. Weast, R. C., Astle, M. J., & Beyer, W. H. (1989). CRC handbook of chemistry and physics (Vol. 1990). Boca Raton: CRC Press.Google Scholar
  118. Wei, L., Dingguo, J., & Tao, C. (2011). Effects of flood on thermal structure of a stratified reservoir. Procedia Environmental Sciences, 10, 1811–1817.  https://doi.org/10.1016/j.proenv.2011.09.283.CrossRefGoogle Scholar
  119. Weiss, R., Carmack, E., & Koropalov, V. (1991). Deep-water renewal and biological production in Lake Baikal. Nature, 349(6311), 665–669.  https://doi.org/10.1038/349665a0.CrossRefGoogle Scholar
  120. Welch, H. L., Green, C. T., & Coupe, R. H. (2011). The fate and transport of nitrate in shallow groundwater in northwestern Mississippi, USA. Hydrogeology Journal, 19(6), 1239–1252.  https://doi.org/10.1007/s10040-011-0748-8.CrossRefGoogle Scholar
  121. Wen, Z., Song, K., Zhao, Y., & Jin, X. (2016). Carbon dioxide and methane supersaturation in lakes of semi-humid/semi-arid region, Northeastern China. Atmospheric Environment, 138, 65–73.  https://doi.org/10.1016/j.atmosenv.2016.05.009.CrossRefGoogle Scholar
  122. West, W. E., Creamer, K. P., & Jones, S. E. (2016). Productivity and depth regulate lake contributions to atmospheric methane. Limnology and Oceanography, 61(S1), S51–S61.  https://doi.org/10.1002/lno.10247.CrossRefGoogle Scholar
  123. Wetzel, R. G. (2001). Limnology: lake and river ecosystems. Gulf Professional Publishing.Google Scholar
  124. Weyhenmeyer, G. A., Kosten, S., Wallin, M. B., Tranvik, L. J., Jeppesen, E., & Roland, F. (2015). Significant fraction of CO2 emissions from boreal lakes derived from hydrologic inorganic carbon inputs. Nature Geoscience, 8(12), 933–936.  https://doi.org/10.1038/ngeo2582.CrossRefGoogle Scholar
  125. Woolway, R. I., Meinson, P., Nõges, P., Jones, I. D., & Laas, A. (2017). Atmospheric stilling leads to prolonged thermal stratification in a large shallow polymictic lake. Climatic Change, 141(4), 759–773.  https://doi.org/10.1007/s10584-017-1909-0.CrossRefGoogle Scholar
  126. Xiao, Y., Li, Z., Guo, J., Fang, F., & Smith, V. H. (2016). Succession of phytoplankton assemblages in response to large-scale reservoir operation: a case study in a tributary of the Three Gorges Reservoir, China. Environmental Monitoring and Assessment, 188(3), 1–20.  https://doi.org/10.1007/s10661-016-5132-7.CrossRefGoogle Scholar
  127. Xing, Y., Xie, P., Yang, H., Ni, L., Wang, Y., & Rong, K. (2005). Methane and carbon dioxide fluxes from a shallow hypereutrophic subtropical Lake in China. Atmospheric Environment, 39(30), 5532–5540.  https://doi.org/10.1016/j.atmosenv.2005.06.010.CrossRefGoogle Scholar
  128. Yang, L., Lu, F., Zhou, X., Wang, X., Duan, X., & Sun, B. (2014). Progress in the studies on the greenhouse gas emissions from reservoirs. Acta Ecologica Sinica, 34(4), 204–212.  https://doi.org/10.1016/j.chnaes.2013.05.011.CrossRefGoogle Scholar
  129. Yang, H., Andersen, T., Dörsch, P., Tominaga, K., Thrane, J.-E., & Hessen, D. O. (2015). Greenhouse gas metabolism in Nordic boreal lakes. Biogeochemistry, 126(1), 211–225.  https://doi.org/10.1007/s10533-015-0154-8.CrossRefGoogle Scholar
  130. Ye, X., Anderson, E. J., Chu, P. Y., Huang, C., & Xue, P. (2019). Impact of water mixing and ice formation on the warming of lake superior: a model-guided mechanism study. Limnology and Oceanography, 64(2), 558–574.  https://doi.org/10.1002/lno.11059.CrossRefGoogle Scholar
  131. Zhang, Y., Wu, Z., Liu, M., He, J., Shi, K., Zhou, Y., Wang, M., & Liu, X. (2015). Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Research, 75, 249–258.  https://doi.org/10.1016/j.watres.2015.02.052.CrossRefGoogle Scholar
  132. Zhang, T., Li, J., Pu, J., Martin, J. B., Khadka, M. B., Wu, F., Li, L., Jiang, F., Huang, S., & Yuan, D. (2017). River sequesters atmospheric carbon and limits the CO2 degassing in karst area, southwest China. Science of the Total Environment, 609, 92–101.  https://doi.org/10.1016/j.scitotenv.2017.07.143.CrossRefGoogle Scholar
  133. Zhao, C. S., Shao, N. F., Yang, S. T., Ren, H., Ge, Y. R., Feng, P., Dong, B. E., & Zhao, Y. (2019). Predicting cyanobacteria bloom occurrence in lakes and reservoirs before blooms occur. Science of the Total Environment, 670, 837–848.  https://doi.org/10.1016/j.scitotenv.2019.03.161.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Graduate School of HorticultureChiba UniversityMatsudoJapan
  2. 2.School of Environmental Ecology and Biological EngineeringWuhan Institute of TechnologyWuhanChina
  3. 3.School of Environmental Science and EngineeringSun Yat-sen UniversityGuangzhouChina

Personalised recommendations