Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates

  • Ibrar KhanEmail author
  • Maryam Aftab
  • SajidUllah Shakir
  • Madiha Ali
  • Sadia Qayyum
  • Mujadda Ur Rehman
  • Kashif Syed Haleem
  • Isfahan TouseefEmail author


Remediation of heavy metals, other than microbial bioleaching method, is expensive and unsuitable for large contaminated areas. The current study was aimed to isolate, identify, and test the potential of indigenous fungal strains for heavy metal removal from contaminated soil. A total of three metallotolerant fungal strains, i.e., Aspergillus niger (M1DGR), Aspergillus fumigatus (M3Ai), and Penicillium rubens (M2Aii), were isolated and identified by phenotyping and genotyping from heavy metal–contaminated soil of  Hattar Industrial Estate, Pakistan. A. niger was found to be the most successful strain for the removal of heavy metals from the contaminated soil with maximum bioaccumulation efficiency of 98% (Cd) and 43% (Cr). In contrast, A. fumigatus showed comparatively low but still considerable bioleaching potential, i.e., 79% and 69% for Cd and Cr removal, respectively. Maximum metal uptake efficiency, i.e., 0.580 mg g−1 and 0.152 mg g−1 by A. niger strain was noticed for Cd and Cr with Czapek yeast extract (CYE) and Sabouraud dextrose broth (SDB) media, respectively. A. fumigatus (M3Ai) exhibited the maximum bioleaching capacity (0.40 mg g−1) for Cr with CYE medium. The results reveal that A. niger M1DGR and A. fumigatus M3Ai could be used to develop new strategies to remediate soil contaminated with heavy metals (Cd and Cr) through either in situ or ex situ mycoremediation.


Heavy metal Hattar Industrial Estate (HIE) Mycoremediation Indigenous microbes 


Funding information

This work was financially supported by the Higher Education Commission, Government of Pakistan under SRGP Program (no. 21-1259/SRGP/R&D/HEC/2017).


  1. Ahirwar, N. K., Gupta, G., Singh, R., & Singh, V. (2016). Isolation, identification and characterization of heavy metal resistant bacteria from industrial affected soil in Central India. International Journal of Pure & Applied Bioscience, 4, 88–93.CrossRefGoogle Scholar
  2. Ahmad, A., Bhat, A., & Buang, A. (2019). Enhanced biosorption of transition metals by living Chlorella vulgaris immobilized in Ca-alginate beads. Environmental Technology, 40(14), 1793–1809.CrossRefGoogle Scholar
  3. Al-Samarrai, T., & Schmid, J. (2000). A simple method for extraction of fungal genomic DNA. Letters in Applied Microbiology, 30(1), 53–56.CrossRefGoogle Scholar
  4. Atakan, A., Özkaya, H. Ö., & Erdoğan, O. (2018). Effects of arbuscular mycorrhizal fungi (AMF) on heavy metal and salt stress. Turkish Journal of Agriculture - Food Science and Technology, 6(11), 1569–1574.CrossRefGoogle Scholar
  5. Ayangbenro, A. S., & Babalola, O. O. (2017). A new strategy for heavy metal polluted environments: a review of microbial biosorbents. International Journal of Environmental Research and Public Health, 14(1), 94.CrossRefGoogle Scholar
  6. Babu, N., & Pathak, V. M. (2019). Biosorption of heavy metals: biological approach to control the industrial waste. In Biotechnology: Concepts, Methodologies, Tools, and Applications (pp. 1898–1909). Pennsylvania: IGI Global.CrossRefGoogle Scholar
  7. Chatterjee, A., Das, R., & Abraham, J. (2019). Bioleaching of heavy metals from spent batteries using Aspergillus nomius JAMK1. International journal of Environmental Science and Technology, 1–18.Google Scholar
  8. Chowdhury, M. A. H., Hoque, M. M., Naher, K., Islam, M., Tamim, U., Alam, K., et al. (2017). Analysis of heavy metals and other elements in textile waste using neutron activation analysis and atomic absorption spectrophotometry. Journal of Environmental Science, Toxicology and Food Technology, 11, 14.CrossRefGoogle Scholar
  9. Das, N., Vimala, R., & Karthika, P. (2008). Biosorption of heavy metals–an overview. Indian Journal of Biotechnology, 7(2), 159–169.Google Scholar
  10. Davis, T. A., Volesky, B., & Mucci, A. (2003). A review of the biochemistry of heavy metal biosorption by brown algae. Water Research, 37(18), 4311–4330.CrossRefGoogle Scholar
  11. Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., et al. (2015). Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability, 7(2), 2189–2212.CrossRefGoogle Scholar
  12. Faryal, R., Sultan, A., Tahir, F., Ahmed, S., & Hameed, A. (2007). Biosorption of lead by indigenous fungal strains. Pakistan Journal of Botany, 39(2), 615.Google Scholar
  13. Fazli, M. M., Soleimani, N., Mehrasbi, M., Darabian, S., Mohammadi, J., & Ramazani, A. (2015). Highly cadmium tolerant fungi: their tolerance and removal potential. Journal of Environmental Health Science and Engineering, 13(1), 19.CrossRefGoogle Scholar
  14. Fernández, P. M., Viñarta, S. C., Bernal, A. R., Cruz, E. L., & Figueroa, L. I. (2018). Bioremediation strategies for chromium removal: current research, scale-up approach and future perspectives. Chemosphere., 208, 139–148.CrossRefGoogle Scholar
  15. Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418.CrossRefGoogle Scholar
  16. Gadd, G. M. (1994). Interactions of fungi with toxic metals. In The genus Aspergillus (pp. 361–374). Berlin: Springer.CrossRefGoogle Scholar
  17. Gonzalez, L. M. H., Rivera, V. A., Phillips, C. B., Haug, L. A., Hatch, S. L., Yeager, L. E., et al. (2019). Characterization of soil profiles and elemental concentrations reveals deposition of heavy metals and phosphorus in a Chicago-area nature preserve, Gensburg Markham Prairie. Journal of Soils and Sediments, 1–15.Google Scholar
  18. Goyal, N., Jain, S., & Banerjee, U. (2003). Comparative studies on the microbial adsorption of heavy metals. Advances in Environmental Research, 7(2), 311–319.CrossRefGoogle Scholar
  19. Iram, S., Ahmad, I., Javed, B., Yaqoob, S., Akhtar, K., Kazmi, M. R., et al. (2009). Fungal tolerance to heavy metals. Pakistan Journal of Botany, 41(5), 2583–2594.Google Scholar
  20. Iram, S., Zaman, A., Iqbal, Z., & Shabbir, R. (2013). Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Polish Journal of Environmental Studies, 22(3), 691–697.Google Scholar
  21. Jacob, J. M., Karthik, C., Saratale, R. G., Kumar, S. S., Prabakar, D., Kadirvelu, K., & Pugazhendhi, A. (2018). Biological approaches to tackle heavy metal pollution: a survey of literature. Journal of Environmental Management, 217, 56–70.CrossRefGoogle Scholar
  22. Jiang, J., Pan, C., Xiao, A., Yang, X., & Zhang, G. (2017). Isolation, identification, and environmental adaptability of heavy-metal-resistant bacteria from ramie rhizosphere soil around mine refinery. 3 Biotech, 7, 5(1).
  23. Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr (VI)]: a comprehensive review. Chemosphere, 207, 255–266.CrossRefGoogle Scholar
  24. Khan, I., Nazir, K., Wang, Z.-P., Liu, G.-L., & Chi, Z.-M. (2014). Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Applied Microbiology and Biotechnology, 98(4), 1539–1546.CrossRefGoogle Scholar
  25. Khan, I., Qayyum, S., Ahmed, S., Haleem, K. S., Liu, G.-L., & Chi, Z.-M. (2017a). Isolation and characterization of medicinally important marine Penicillium isolates. Pakistan Journal of Zoology, 49(2).Google Scholar
  26. Khan, I., Qayyum, S., Ahmed, S., Maqbool, F., Tauseef, I., Haleem, K. S., & Chi, Z. M. (2017b). Cloning and characterization of pyruvate carboxylase gene responsible for calcium malate overproduction in Penicillium viticola 152 and its expression analysis. Gene, 605, 81–91.CrossRefGoogle Scholar
  27. Lima de Silva, A. A., de Carvalho, M. A. R., de Souza, S. A. L., Dias, P. M. T., da Silva Filho, R. G., de Meirelles Saramago, C. S., et al. (2012). Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology, 43(4), 1620–1631. Scholar
  28. Malik, A. (2004). Metal bioremediation through growing cells. Environment International, 30(2), 261–278.CrossRefGoogle Scholar
  29. Mathivanan, K., & Rajaram, R. (2014). Tolerance and biosorption of cadmium (II) ions by highly cadmium resistant bacteria isolated from industrially polluted estuarine environment. Indian Journal of Geo-Marine Sciences, 43(4), 580–588.Google Scholar
  30. Mishra, S., Bharagava, R. N., More, N., Yadav, A., Zainith, S., Mani, S., et al. (2019). Heavy metal contamination: an alarming threat to environment and human health. In Environmental biotechnology: For sustainable future (pp. 103–125). Berlin: Springer.CrossRefGoogle Scholar
  31. Mudhoo, A., Garg, V. K., & Wang, S. (2012). Removal of heavy metals by biosorption. Environmental Chemistry Letters, 10(2), 109–117. Scholar
  32. Naidu, R., Kookana, R. S., Oliver, D. P., Rogers, S., & McLaughlin, M. J. (2012). Contaminants and the soil environment in the Australasia-Pacific region: Proceedings of the First Australasia-Pacific Conference on Contaminants and Soil Environment in the Australasia-Pacific Region, Held in Adelaide, Australia, 18–23 February 1996: Springer Science & Business Media.Google Scholar
  33. Nath, S., Deb, B., & Sharma, I. (2018). Isolation of toxic metal-tolerant bacteria from soil and examination of their bioaugmentation potentiality by pot studies in cadmium-and lead-contaminated soil. International Microbiology, 1–11.Google Scholar
  34. Page, A., Miller, R., & Keeney, D. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties. Agronomy, No. 9. Soil Science Society of America, Madison, WI, 1159.Google Scholar
  35. Pedersen, L. H., Skouboe, P., Boysen, M., Soule, J., & Rossen, L. (1997). Detection of Penicillium species in complex food samples using the polymerase chain reaction. International Journal of Food Microbiology, 35(2), 169–177.CrossRefGoogle Scholar
  36. Qayyum, S., Khan, I., Bhatti Zulfiqar, A., Tang, F., & Peng, C. (2016a). Fungal strain Aspergillus flavus F3 as a potential candidate for the removal of lead (II) and chromium (VI) from contaminated soil. Main Group Metal Chemistry, 39, 93.Google Scholar
  37. Qayyum, S., Khan, I., Maqboo, F., Zhao, Y., Gu, Q., & Peng, C. (2016b). Isolation and characterization of heavy metal resistant fungal isolates from industrial soil in China. Pakistan Journal of Zoology, 48(5).Google Scholar
  38. Qayyum, S., Khan, I., Meng, K., Zang, X., Zhao, Y., Gu, Q., et al. (2016c). Bioaccumulation of heavy metals from aqueous solution using indigenous fungal isolates. Indian Journal of Geo-Marine Sciences, 45(4), 499–507.Google Scholar
  39. Qayyum, S., Khan, I., Zhao, Y., Maqbool, F., & Peng, C. (2016d). Sequential extraction procedure for fractionation of Pb and Cr in artificial and contaminated soil. Main Group Metal Chemistry, 39(1–2), 49–58.Google Scholar
  40. Rahman, Z., & Singh, V. P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: an overview. Environmental Monitoring and Assessment, 191(7), 419.CrossRefGoogle Scholar
  41. Rasheed, H. U., Rasheed, B., Khan, A., & Ali, N. (2013). Management of Hattar Industrial Estate’s effluent by phytoremediation technology Haroon Ur Rasheed, 2 Bilawal Rasheed, 2 Ayub Khan and 2 Nawshad Ali. International Journal of Scientific & Engineering Research, 4(8).Google Scholar
  42. Rather, L. J., Akhter, S., & Hassan, Q. P. (2018). Bioremediation: green and sustainable technology for textile effluent treatment. In Sustainable Innovations in Textile Chemistry and Dyes (pp. 75–91). Berlin: Springer.CrossRefGoogle Scholar
  43. Rohwerder, T., Gehrke, T., Kinzler, K., & Sand, W. (2003). Bioleaching review part a. Applied Microbiology and Biotechnology, 63(3), 239–248.CrossRefGoogle Scholar
  44. Rose, P. K., & Devi, R. (2018). Heavy metal tolerance and adaptability assessment of indigenous filamentous fungi isolated from industrial wastewater and sludge samples. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 688–694.CrossRefGoogle Scholar
  45. Saeed, M., Muhammad, N., & Khan, H. (2011). Assessment of heavy metal content of branded Pakistani herbal products. Tropical Journal of Pharmaceutical Research, 10(4), 499–506.CrossRefGoogle Scholar
  46. Sajjad, W., Zheng, G., Din, G., Ma, X., Rafiq, M., & Xu, W. (2019). Metals extraction from sulfide ores with microorganisms: the bioleaching technology and recent developments. Transactions of the Indian Institute of Metals, 72(3), 559–579.CrossRefGoogle Scholar
  47. Sawyerr, H. O., Raimi, M., Adeolu, A. T., & Odipe, O. E. (2019). Measures of harm from heavy metal pollution in battery technician within Ilorin Metropolis, Kwara State, Nigeria. Communication, Society and Media, ISSN, 2576–5388.Google Scholar
  48. Sen, M., & Ghosh, M. (2011). Biosorption of Cr (VI) by resting cells of Fusarium solani. Journal of Environmental Health Science & Engineerin, 8(2), 153–158.Google Scholar
  49. Shannon, M. A., Bohn, P. W., Elimelech, M., Georgiadis, J. G., Marinas, B. J., & Mayes, A. M. (2010). Science and technology for water purification in the coming decades. In Nanoscience And Technology: A Collection of Reviews from Nature Journals (pp. 337–346). Singapore: World Scientific.Google Scholar
  50. Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66(2), 258–266.CrossRefGoogle Scholar
  51. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: an overview. The Indian Journal of Pharmacy, 43(3), 246–253. Scholar
  52. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.CrossRefGoogle Scholar
  53. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. EXS, 101, 133–164. Scholar
  54. Tiwari, S., & Lata, C. (2018). Heavy metal stress, signaling, and tolerance due to plant-associated microbes: an overview. Frontiers in Plant Science, 9, 452.CrossRefGoogle Scholar
  55. Varol, M., & Sünbül, M. R. (2018). Biomonitoring of trace metals in the Keban Dam Reservoir (Turkey) using mussels (Unio elongatulus eucirrus) and crayfish (Astacus leptodactylus). Biological Trace Element Research, 1–9.Google Scholar
  56. Veglio, F., & Beolchini, F. (1997). Removal of metals by biosorption: a review. Hydrometallurgy, 44(3), 301–316.CrossRefGoogle Scholar
  57. Volesky, B., & Holan, Z. (1995). Biosorption of heavy metals. Biotechnology Progress, 11(3), 235–250.CrossRefGoogle Scholar
  58. Xavier, J., Costa, P., Hissa, D., Melo, V., Falcão, R., Balbino, V., et al. (2019). Evaluation of the microbial diversity and heavy metal resistance genes of a microbial community on contaminated environment. Applied Geochemistry, 105, 1–6.CrossRefGoogle Scholar
  59. Yang, J., You, S., & Zheng, J. (2019). Review in strengthening technology for phytoremediation of soil contaminated by heavy metals. In IOP Conference Series: Earth and Environmental Science (Vol. 242, p. 052003, Vol. 5). Bristol: IOP Publishing.Google Scholar
  60. Zili, D., Jinping, W., Chunhai, J., & Cougui, C. (2016). Isolation of heavy metal-resistant fungi from contaminated soil and co-culturing with rice seedlings. African Journal of Microbiology Research, 10(28), 1080–1085.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyAbbottabad University of Science & TechnologyAbbottabadPakistan
  2. 2.Department of MicrobiologyHazara UniversityMansehraPakistan

Personalised recommendations