Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Surface chlorophyll anomalies associated with Indian Ocean Dipole and El Niño Southern Oscillation in North Indian Ocean: a case study of 2006–2007 event

  • 37 Accesses

  • 1 Citations

Abstract

North Indian Ocean witnesses varied dynamical response due to independent climate modes such as Indian Ocean Dipole (IOD)/El Niño Southern Oscillations (ENSO) and their co-occurrences. These modes have a significant impact on ocean productivity, which in turn shows feedback for the strengthening of these patterns. Keeping this in view, the present work attempts to analyze the biological activity during the combined influence of positive IOD with El Niño during 2006–2007 event. To divulge the biological variability along with the dynamical response, the study includes intra-annual variability surface chlorophyll anomaly with D20 anomaly using satellite observations. Here, the individual role of IOD and ENSO on both surface chlorophyll and D20 is segregated through partial regression analysis for a period of 25 years (1993–2017). By the regression method, it can be seen varied chlorophyll response for the 2006–2007 event with the IOD forcing leads to the major spatial and temporal variability with positive anomalies in Eastern Equatorial Indian Ocean (EEIO) (generally oligotrophic), Northwestern Bay of Bengal (NWBoB), and Northwestern Arabian Sea (NAS2) where production begins in fall intermonsoon and peaks up during November. On the other hand, negative anomalies are observed around the southern tip of India (SBoB) and the Northern Arabian Sea (NAS1). While ENSO depicts the high surface chlorophyll variability in the Western Indian Ocean (WIO1, WIO2) with negative anomalies of surface chlorophyll. This study observed an asymmetric response of chlorophyll variability over the North Indian Ocean during the 1997–1998 and 2006–2007 events with a major influence of IOD mode compared with the El Niño. Therefore, understanding the chlorophyll anomalies during different climate modes will help us to better understand the interannual variability and improve the predictability of chlorophyll productivity regions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abram, N. J., Gagan, M. K., Cole, J. E., Hantoro, W. S., & Mudelsee, M. (2008). Recent intensification of tropical climate variability in the Indian Ocean. Nature Geoscience, 1, 849–853.

  2. Ashok, K., Guan, Z., & Yamagata, T. (2001). Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO. Geophysical Research Letters, 28, 4499–4502.

  3. Behera, S. K., & Yamagata, T. (2003). Influence of the Indian Ocean Dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan, 81, 1,169–1,177. https://doi.org/10.2151/jmsj.81.169.

  4. Behera, S. K., Krishnan, S., & Yamagata, T. (1999). Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994. Geophysical Research Letters, 26, 3001–3004. https://doi.org/10.1029/1999/GL010434.

  5. Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163–172.

  6. Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S. W. A., & Maury, O. (2013). Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10, 6677–6698. https://doi.org/10.5194/bg-10-6677-201.

  7. Deser, C., & Wallace, J. M. (1987). El Niño events and their relation to the Southern Oscillation:1925–1986. Journal of Geophysical Research, 92(14), 189–14,196.

  8. Dey, S., & Singh, R. P. (2003). Comparison of chlorophyll distributions in the northeastern Arabian Sea and southern Bay of Bengal using IRS-P4 Ocean Color Monitor data. Remote Sensing of Environment, 85(4), 424–428.

  9. Du, Y., Xie, S. P., Huang, G., & Hu, K. (2009). Role of air-sea interaction in the long persistence of El Niño–induced North Indian Ocean warming. Journal of Climate, 22, 2023–2038. https://doi.org/10.1175/2008JCLI2590.1.

  10. Hong, C. C., Lu, M. M., & Kanamitsu, M. (2008). Temporal and spatial characteristics of positive and negative Indian Ocean Dipole with and without ENSO. Journal of Geophysical Research, 113, D08107. https://doi.org/10.1029/2007JD009151.

  11. Iskandar, I., Rao, S., & Tozuka, T. (2009). Chlorophyll-a bloom along the southern coasts of Java and Sumatra during 2006. International Journal of Remote Sensing, 30, 663–671.

  12. Khole, M. (2003). Variability of sea surface temperature field over the Indian Ocean during El-Nino and La-Nina. Mausam, 54(4), 829–836.

  13. Klein, S. A., Soden, B. J., & Lau, N. C. (1999). Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. Journal of Climate, 12, 917–932. https://doi.org/10.1175/15200442(1999)012<0917:RSSTVD>2.0.CO;2.

  14. Kumar, K. K., Rajagopalan, B., & Cane, M. A. (1999). On the weakening relationship between the Indian monsoon and ENSO. Science, 284, 2156–2159.

  15. Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G., & Cane, M. (2006). Unraveling the mystery of Indian monsoon failure during El Niño. Science, 314, 115–119.

  16. McClain, C. R., Feldman, G. C., & Hooker, S. B. (2004). An overview of the SeaWiFS project and strategies for producing a climate research quality global ocean bio-optical time series. Deep Sea Research Part II: Topical Studies in Oceanography, 51(1–3), 5–42.

  17. McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an integrating concept in earth science. Science, 314, 1740–1745. https://doi.org/10.1126/science.1132588.

  18. Ménard, F., Marsac, F., Bellier, E., & Cazelles, B. (2007). Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fisheries Oceanography, 16, 95–104. https://doi.org/10.1111/j.1365-2419.2006.00415.x.

  19. Messié, M., & Chavez, F. P. (2012). A global analysis of ENSO synchrony: the oceans’ biological response to physical forcing. Journal of Geophysical Research, Oceans, 117(C9), 1–19. https://doi.org/10.1029/2012JC007938

  20. Meyers, G., McIntosh, P., Pigot, L., & Pook, M. (2007). The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate, 20(13), 2872–2880.

  21. Murtugudde, R., & Busalacchi, A. J. (1999). Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. Journal of Climate, 12, 2300–2326. https://doi.org/10.1175/15200442(1999)012<2300:IVOTDA>2.0.CO;2.

  22. Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F. F., Wakata, Y., Yamagata, T., & Zebiak, S. (1998). ENSO theory. Journal of Geophysical Research, 103(14), 261–14,290.

  23. Nidheesh, A. G., Lengaigne, M., Vialard, J., Unnikrishnan, A. S., & Dayan, H. (2013). Decadal and long-term sea level variability in the tropical Indo-Pacific Ocean. Climate Dynamics, 41, 381–402. https://doi.org/10.1007/s00382-012-1463-4.

  24. Park, J. Y., & Kug, J. S. (2014). Marine biological feedback associated with Indian Ocean Dipole in a coupled ocean/biogeochemical model. Climate Dynamics, 42(1–2), 329–343.

  25. Pervez, M. S., & Henebry, G. M. (2015). Spatial and seasonal responses of precipitation in the Ganges and Brahmaputra river basins to ENSO and Indian Ocean Dipole modes: implications for flooding and drought. Natural Hazards and Earth System Sciences, 15, 147–162.

  26. Rao, R. R., Girish Kumar, M. S., Ravichandran, M., Rao, A. R., Gopalakrishna, V. V., & Thadathil, P. (2010). Interannual variability of Kelvin wave propagation in the wave guides of the equatorial Indian Ocean, the coastal Bay of Bengal and the southeastern Arabian Sea during 1993–2006. Deep Sea Research, Part I, 57, 1–13. https://doi.org/10.1016/j.dsr.2009.10.008.

  27. Reason, C. J. C., Allan, R. J., Lindesay, J. A., & Ansell, T. J. (2000). ENSO and climatic signals across the Indian Ocean Basin in the global context: part I, interannual composite patterns. International Journal of Climatology, 20, 1285–1327. https://doi.org/10.1002/10970088(200009)20:11<1285:AID-JOC536>3.0.CO;2-R.

  28. Sachidanandan, C., Lengaigne, M., Muraleedharan, P. M., & Mathew, B. (2017). Interannual variability of zonal currents in the equatorial Indian Ocean: respective control of IOD and ENSO. Ocean Dynamics, 67(7), 857–873.

  29. Sahu, S. K., Yoon, H. J., & Widhiyanuriyawan, D. (2011). Impact on the chlorophyll concentration in the Bay of Bengal and Arabian Sea during Indian Ocean Dipole mode. International Journal of Remote Sensing, 32(23), 8195–8206.

  30. Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

  31. Sarma, V. V. S. S. (2006). The influence of Indian Ocean Dipole (IOD) on the biogeochemistry of carbon in the Arabian Sea during 1997–1998. Journal of Earth System Science, 115, 433–450. https://doi.org/10.1007/BF02702872.

  32. Spencer, T., Teleki, K. A., Bradshaw, C., & Spalding, M. D. (2000). Coral bleaching in the Southern Seychelles during the 1997–1998 Indian Ocean warm event. Marine Pollution Bulletin, 40, 569–586. https://doi.org/10.1016/S0025-326X(00)00026-6.

  33. Torrence, C., & Webster, P. J. (1999). Interdecadal Changes in the ENSO–Monsoon System. Journal of Climate, 12, 2679–2690.

  34. Trenberth, K. E. (1997). The definition of El Niño. Bulletin of the American Meteorological Society, 78, 2771–2777.

  35. Ummenhofer, C. C., Gupta, A. S., Li, Y., Taschetto, A. S., & England, M. H. (2011). Multi-decadal modulation of the El Niño–Indian monsoon relationship by Indian Ocean variability. Environmental Research Letters, 6, 034006. https://doi.org/10.1088/1748-9326/6/3/034006.

  36. Venzke, S., Latif, M., & Villwock, A. (2000). Coupled GCM ECHO-2. Part II: Indian ocean response to ENSO. Journal of Climate, 13, 1371–1383.

  37. Vidyaa, P. J., & Kurian, S. (2018). Impact of 2015–2016 ENSO on the winter bloom and associated phytoplankton community shift in the northeastern Arabian Sea. Journal of Marine Systems, 186, 96–104.

  38. Vinueza, L. R., Branch, G. M., Branch, M. L., & Bustamante, R. H. (2006). Top-down herbivory and bottom-up El Niño effects on Galápagos rocky-shore communities. Ecological Monographs, 76, 111–131. https://doi.org/10.1890/04-1957.

  39. Wang, C., & Fiedler, P. C. (2006). ENSO variability and the eastern tropical Pacific: a review. Progress in Oceanography, 69, 239–266. https://doi.org/10.1016/j.pocean.2006.03.004.

  40. Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401, 356–360. https://doi.org/10.1038/43848.

  41. Wiggert, J. D., Vialard, J., & Behrenfeld, M. J. (2009). Basinwide modification of dynamical and biogeochemical processes by the positive phase of the Indian Ocean Dipole during the SeaWiFS era. In J. D. Wiggert, R. R. Hood, S. Wajih, A. Naqvi, K. H. Brink, & S. L. Smith (Eds.), Indian ocean biogeochemical processes and ecological variability, Geophysical Monograph Series, vol. 185, 385–407.

  42. Wright, P. (1979). Persistence of rainfall anomalies in the Central Pacific. Nature, 277, 371–374.

  43. Xie, S. P., Hafner, J., Tokinaga, H., Du, Y., Sample, T., & Hu KaiMing, H. G. (2009). Indian ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. Journal of Climate, 22, 730–747. https://doi.org/10.1175/2008JCLI2544.1.

Download references

Acknowledgments

We are very much thankful to Ms. Pavan Harika Raavi, graduate research scholar, of the University of Melbourne for her consistent support to the manuscript. We are delighted to IIT Kharagpur and MHRD (Ministry of Human Resource and Development) for providing the necessary platform for the work and financial assistantship for carrying out the research works. We are also showing our gratitude towards PODAAC (Physical Oceanography Distributed Active Archive Center) for giving chlorophyll data (https://podaac.jpl.nasa.gov) from Sea WiFS monthly data. We are glad to put our thanks towards Advanced Microwave Scanning Radiometer-Earth data (AMSR-E) for providing SST data with the site (apdrc.soest.hawaii.edu) and also to Climate Forecast System (CFS), National Climatic Data Center (NCDC), and National Oceanic and Atmospheric Administration (NOAA) (http://cfs.ncep.noaa.gov/pub/raid1/cfsv2/reforecast.monthly.time/) for providing D20 data. We are satisfied to get averaged SST anomalies over the Niño 3.4 region as obtained from European Climate Assessment and Data (https://climexp.knmi.nl/getindices.cgi?WMO=NCEPData/nino4_daily&STATION=NINO4&TYPE=i&id=someone@somewhere&NPERYEAR=366).

Author information

Correspondence to Suchita Pandey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Terrestrial and Ocean Dynamics: India Perspective

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Bhagawati, C., Dandapat, S. et al. Surface chlorophyll anomalies associated with Indian Ocean Dipole and El Niño Southern Oscillation in North Indian Ocean: a case study of 2006–2007 event. Environ Monit Assess 191, 807 (2019). https://doi.org/10.1007/s10661-019-7754-z

Download citation

Keywords

  • Surface chlorophyll
  • Indian Ocean Dipole
  • El Niño Southern Oscillation
  • Partial regression
  • Interannual variability