Accurate total solar irradiance estimates under irradiance measurements scarcity scenarios

  • María Laura LópezEmail author
  • Luis E. Olcese
  • Gustavo G. Palancar
  • Beatriz M. Toselli


Accurate estimates of total global solar irradiance reaching the Earth’s surface are relevant since routine measurements are not always available. This work aimed to determine which of the models used to estimate daily total global solar irradiance (TGSI) is the best model when irradiance measurements are scarce in a given site. A model based on an artificial neural network (ANN) and empirical models based on temperature and sunshine measurements were analyzed and evaluated in Córdoba, Argentina. The performance of the models was benchmarked using different statistical estimators such as the mean bias error (MBE), the mean absolute bias error (MABE), the correlation coefficient (r), the Nash-Sutcliffe equation (NSE), and the statistics t test (t value). The results showed that when enough measurements were available, both the ANN and the empirical models accurately predicted TGSI (with MBE and MABE ≤ |0.11| and ≤ |1.98| kWh m−2 day−1, respectively; NSE ≥ 0.83; r ≥ 0.95; and |t values| < t critical value). However, when few TGSI measurements were available (2, 3, 5, 7, or 10 days per month) only the ANN-based method was accurate (|t value| < t critical value), yielding precise results although only 2 measurements per month were available for 1 year. This model has an important advantage over the empirical models and is very relevant to Argentina due to the scarcity of TGSI measurements.


Artificial neural network Scarce measurements Solar energy Solar radiation estimation 



We thank Secretaría de Ciencia y Tecnología de la Universidad Nacional de Córdoba (UNC), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), and Agencia Nacional de Promoción Científica (FONCYT) for their support.


  1. Akinoglu, B. G., & Ecevit, A. (1990). Construction of a quadratic model using modified Ångström coefficients to estimate global solar radiation. Solar Energy, 45, 85–92.CrossRefGoogle Scholar
  2. Allen, R. G. (1997). Self-calibrating method for estimating solar radiation from air temperature. Journal of Hydrologic Engineering, 2, 56–67.CrossRefGoogle Scholar
  3. Almorox, J., Benito, M., & Hontoria, C. (2005). Estimation of monthly Ångström-Prescott equation coefficients from measured daily data in Toledo, Spain. Renewable Energy, 30, 931–936.CrossRefGoogle Scholar
  4. Almorox, J., Bocco, M., & Willington, E. (2013). Estimation of daily global solar radiation from measured temperatures at Cañada de Luque, Córdoba, Argentina. Renewable Energy, 60, 382–387.CrossRefGoogle Scholar
  5. Ampratwum, D. B., & Dorvlo, A. S. S. (1999). Estimation of solar radiation from the number of sunshine hours. Applied Energy, 63, 161–167.CrossRefGoogle Scholar
  6. Ångström, A. (1924). Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50, 121–125.CrossRefGoogle Scholar
  7. Antonopoulos, V. Z., Papamichail, D. M., Aschonitis, V. G., & Antonopoulos, A. V. (2019). Solar radiation estimation methods using ANN and empirical models Author links open overlay panel. Computers and Electronics in Agriculture, 160, 160–167.CrossRefGoogle Scholar
  8. Bakirci, K. (2009a). Models of solar radiation with hours of bright sunshine: a review. Renewable and Sustainable Energy Reviews, 13, 2580–2588.CrossRefGoogle Scholar
  9. Bakirci, K. (2009b). Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey. Energy, 34, 485–501.CrossRefGoogle Scholar
  10. Barron, M. G., Vivian, D. N., Yee, S. H., & Santavy, D. L. (2009). Methods to estimate solar radiation dosimetry in coral reefs using remote sensed, modeled, and in situ data. Environmental Monitoring and Assessment, 151, 445–455.CrossRefGoogle Scholar
  11. Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and application. Journal of Microbiological Methods, 43, 3–31.CrossRefGoogle Scholar
  12. Besharat, F., Dehghan, A. A., & Faghih, A. R. (2013). Empirical models for estimating global solar radiation: a review and case study. Renewable and Sustainable Energy Reviews, 21, 798–821.CrossRefGoogle Scholar
  13. Bristow, K. L., & Campbell, G. S. (1984). On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology, 31, 159–166.CrossRefGoogle Scholar
  14. Chen, R., Ersi, K., Yang, J., Lu, S., & Zhao, W. (2004). Validation of five global radiation models with measured daily data in China. Energy Conversion and Management, 45, 1759–1769.CrossRefGoogle Scholar
  15. Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F., & Kişi, Ö. (2018). Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches. Environmental Earth Sciences, 77(8), 314.CrossRefGoogle Scholar
  16. Citakoglu, H. (2015). Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Computers and Electronics in Agriculture, 118, 28–37.CrossRefGoogle Scholar
  17. De Souza, J. L., Bastos Lyra, G., Dos Santos, C. M., Araujo Ferreira Junior, R., Tiba, C., Bastos Lyra, G., & Maringolo Lemes, M. A. (2016). Empirical models of daily and monthly global solar irradiation using sunshine duration for Alagoas State, Northeastern Brazil. Sustainable Energy Technologies and Assessments, 14, 35–45.CrossRefGoogle Scholar
  18. Donatelli, M., & Campbell, G. S. (1998). A simple model to estimate global solar radiation. Proceedings of the fifth European society of agronomy congress, Nitra, Slovak Republic (pp. 133–134).Google Scholar
  19. Duffie, J. A., & Beckman, W. A. (1991). Solar engineering of thermal processes. Hoboken: Wiley.Google Scholar
  20. Elani, U. A. (2007). Distribution of ultraviolet solar radiation at Riyadh Region, Saudi Arabia. Environmental Monitoring and Assessment, 124, 235–241.CrossRefGoogle Scholar
  21. Hagan, M. T., & Menhaj, M. B. (1994). Training feed forward networks with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5(6), 989–993.CrossRefGoogle Scholar
  22. Hargreaves, G. H., & Samani, Z. A. (1982). Estimating potential evapotranspiration. Journal of Irrigation and Drainage Engineering, 108, 223–230.Google Scholar
  23. He, Z., Wen, X., Liu, H., & Du, J. (2014). A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. Journal of Hydrology, 509, 379–386.CrossRefGoogle Scholar
  24. Khosravi, A., Koury, R. N. N., Machado, L., & Pabon, J. J. G. (2018). Prediction of hourly solar radiation in Abu Musa Island using machine learning algorithms. Journal of Cleaner Production, 176, 63–75.CrossRefGoogle Scholar
  25. Liu, X., Li, Y., Zhong, X., Zhao, C., Jensen, J. R., & Zhao, Y. (2014). Towards increasing availability of the Ångström-Prescott radiation parameters across China: spatial trend and modeling. Energy Conversion and Management, 87, 975–989.CrossRefGoogle Scholar
  26. Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics, 11(2), 431–441.CrossRefGoogle Scholar
  27. Moreno-Sáez, R., & Mora-López, L. (2014). Modelling the distribution of solar spectral irradiance using data mining techniques. Environmental Modelling & Software, 53, 163–172.CrossRefGoogle Scholar
  28. Muzathik, A. M., Ibrahim, M. Z., Samo, K. B., & Wan Nik, W. B. (2011). Estimation of global solar irradiation on horizontal and inclined surfaces based on the horizontal measurements. Energy, 36, 812–818.CrossRefGoogle Scholar
  29. Newland, F. J. (1988). A study of solar radiation models for the coastal region of South China. Solar Energy, 31, 227–235.Google Scholar
  30. Prescott, J. A. (1940). Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64, 114–118.Google Scholar
  31. Quej, V. H., Almorox, J., Ibrakhimov, M., & Saito, L. (2016). Empirical models for estimating daily global solar radiation in Yucatán Peninsula, Mexico. Energy Conversion and Management, 110, 448–456.CrossRefGoogle Scholar
  32. Quej, V. H., Almorox, J., Arnaldo, J. A., & Saito, L. (2017). ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment. Journal of Atmospheric and Solar - Terrestrial Physics, 155, 62–70.CrossRefGoogle Scholar
  33. Rafiei-Sardooi, E., Mohseni-Saravi, M., Barkhori, S., Azareh, A., Choubin, B., & Jafari-Shalamzar, M. (2018). Drought modeling: a comparative study between time series and neuro-fuzzy approaches. Arabian Journal of Geosciences, 11(17), 487.CrossRefGoogle Scholar
  34. Sajedi-Hosseini, F., Malekian, A., Choubin, B., Rahmati, O., Cipullo, S., Coulon, F., & Pradhan, B. (2018). A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment, 644, 954–962.CrossRefGoogle Scholar
  35. Samani, Z. (2000). Estimating solar radiation and evapotranspiration using minimum climatological data. Journal of Irrigation and Drainage Engineering, 126, 265–267.CrossRefGoogle Scholar
  36. Samuel, T. D. M. A. (1991). Estimation of global radiation for Sri Lanka. Solar Energy, 47, 333–337.CrossRefGoogle Scholar
  37. Sharifi, S. S., Rezaverdinejad, V., & Nourani, V. (2016). Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: a comparative study of selected temperature-based approaches. Journal of Atmospheric and Solar - Terrestrial Physics, 149, 131–145.CrossRefGoogle Scholar
  38. Sonmete, M. H., Ertekin, C., Menges, H. O., Hacıseferoğullari, H., & Evrendilek, F. (2011). Assessing monthly average solar radiation models: a comparative case study in Turkey. Environmental Monitoring and Assessment, 175, 251–277.CrossRefGoogle Scholar
  39. Urraca, R., Martinez-de-Pison, E., Sanz-Garcia, A., Antonanzas, J., & Antonanzas-Torres, F. (2017). Estimation methods for global solar radiation: case study evaluation of five different approaches in central Spain. Renewable and Sustainable Energy Reviews, 77, 1098–1113.CrossRefGoogle Scholar
  40. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., & Fouilloy, A. (2017). Machine learning methods for solar radiation forecasting: a review. Renewable Energy, 105, 569–582.CrossRefGoogle Scholar
  41. Wacker, S., Gröbner, J., Zysset, C., Diener, L., Tzoumanikis, P., Kazantzidis, A., Vuilleumier, L., Stöckli, R., Nyeki, S., & Kämpfer, N. (2015). Cloud observations in Switzerland using hemispherical sky cameras. Journal of Geophysical Research – Atmospheres, 120, 695–707.CrossRefGoogle Scholar
  42. Walpole, R. E., Myers, R. H., Myers, S. L., & Ye, K. (2012). Probability & statistics for engineers & scientists. Boston: Prentice Hall.Google Scholar
  43. Wang, J., Wang, E., Yin, H., Feng, L., & Zhao, Y. (2015). Differences between observed and calculated solar radiations and their impact on simulated crop yields. Field Crops Research, 176, 1–10.CrossRefGoogle Scholar
  44. Widén, J., Carpman, N., Castellucci, V., Lingfors, D., Olauson, J., Remouit, F., Bergkvist, M., Grabbe, M., & Waters, R. (2015). Variability assessment and forecasting of renewables: a review for solar, wind, wave and tidal resources. Renewable and Sustainable Energy Reviews, 44, 356–375.CrossRefGoogle Scholar
  45. Yorukoglu, M., & Celik, A. L. (2006). A critical review on the estimation of daily global solar radiation from sunshine duration. Energy Conversion and Management, 47, 2441–2450.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • María Laura López
    • 1
    • 2
    Email author
  • Luis E. Olcese
    • 3
    • 4
  • Gustavo G. Palancar
    • 3
    • 4
  • Beatriz M. Toselli
    • 3
    • 4
  1. 1.Facultad de Matemática, Astronomía, Física y ComputaciónUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Instituto de Física Enrique Gaviola (IFEG)/CONICETCórdobaArgentina
  3. 3.Facultad de Ciencias Químicas, Departamento de Físico QuímicaUniversidad Nacional de CórdobaCórdobaArgentina
  4. 4.Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC)/CONICET/CLCMCórdobaArgentina

Personalised recommendations