Advertisement

Effect of soil disturbance by agricultural activities on the life history traits of monkey frog (Pithecopus azureus)

  • Valeria I. GómezEmail author
  • Arturo I. Kehr
Article
  • 54 Downloads

Abstract

We assessed whether soil disturbance by agricultural activity influences the growth, development, and survival of individuals in the larval, metamorphic, and postmetamorphic stages of amphibians. Tadpoles of Pithecopus azureus (Cope, 1862) were reared in microcosms assembled with soil from two sites, a pristine site and a rice field. For 5 weeks, we recorded tadpole growth and development as well as physicochemical variable of the water: temperature, conductivity, dissolved oxygen, and pH. The results show that rice field soil produced a level of acidification in the water that influenced the growth and development rates of tadpoles. Tadpoles reared in rice soil had a significantly lower growth rate and body length, and during a specified period, the development rate of the tadpole was significantly lower than that of tadpoles in pristine soil. Overall, tadpoles in rice soil took 3 days longer to reach metamorphosis and 1 additional day to complete metamorphosis compared with tadpoles exposed to pristine soil. Our study shows that disturbed soils modify the physicochemical conditions of temporary ponds, impacting on the initial life stage of the anurans.

Keywords

Monkey frog Phytecopus azureus Tadpoles Development Growth Rice field 

Notes

Funding information

Financial support was provided by Fondo para la Investigación Científica y Tecnológica. FONCYT (Grant PICT 2016–1991).

References

  1. Addinsoft. (2017). Xlstat for excel, version 2017.2. New York: Addinsoft.Google Scholar
  2. Arendt, J. D. (1997). Adaptive intrinsic growth rates: an integration across taxa. Quarterly Review of Biology, 72, 149–177.  https://doi.org/10.1086/419764.CrossRefGoogle Scholar
  3. Arnold, S. J., & Wassersug, R. J. (1978). Differential predation on metamorphic anurans by garter snakes (Thomnophis): social behavior as possible defense. Ecology, 59, 1014–1022.CrossRefGoogle Scholar
  4. Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C., Cabagna-Zenklusen, M. C., Junges, C. M., & Basso, A. (2014). Biological endpoints, enzyme activities, and blood cell parameters in two anuran tadpoles species in rice agroecosystems of mid-eastern Argentina. Environmental Monitoring and Assessment, 186, 635–649.  https://doi.org/10.1007/s10661-013-3404-z.CrossRefGoogle Scholar
  5. Bestelmeyer, B. T., Ellison, A. M., & Fraser, W. R. (2011). Analysis of abrupt transitions in ecological systems. Ecosphere, 2, art129.  https://doi.org/10.1890/ES11-00216.1.CrossRefGoogle Scholar
  6. Böhmer, J., & Rahmann, H. (1990). Influence of surface water acidification on amphibians. In W. Hanke (Ed.), Biology and physiology of amphibians (pp. 287–309). Stuttgart: Fisher Verlag.Google Scholar
  7. Crump, M. L., & Vaira, M. (1991). Vulnerability of Pleurodema borelli tadpoles to an avian predator: effect of body size and density. Herpetologica, 47, 316–321.Google Scholar
  8. Fioramonti, E., Semlitsch, R. D., Reyer, H. U., & Fent, K. (1997). Effects of triphenyltin and pH on the growth and development of Rana lessonae and Rana esculenta tadpoles. Environmental Toxicology and Chemistry, 16, 1940–1947.  https://doi.org/10.1897/1551-5028(1997)016%3C1940:EOTAPO%3E2.3.CO;2.CrossRefGoogle Scholar
  9. Freda, J. (1986). The influence of acidic pond water on amphibians: a review. Water Air Soil Pollution, 30, 439–450.  https://doi.org/10.1007/BF00305213.CrossRefGoogle Scholar
  10. Freda, J., & Dunson, W. A. (1984). Sodium balance of amphibian larvae exposed to low environmental pH. Physiological Zoology, 57, 435–443.  https://doi.org/10.1086/physzool.57.4.30163345.CrossRefGoogle Scholar
  11. Frost, D. R. (2017). Amphibian Species of the World: An Online Reference. http://research.amnh.org/herpetology/amphibia/index.html. Accessed 13 Oct 2017.
  12. Gosner, K. L. (1960). A simplified table for staging anurans embryos and larvae with notes of identification. Herpetologica, 16, 183–190.Google Scholar
  13. Granados-Sánchez, D., Hernández-García, M. A., Vázquez-Alarcón, A., & Ruíz-Puga, P. (2012). The processes of desertification and arid regions. Revista Chapingo Serie Ciencias Forestales.  https://doi.org/10.5154/r.rchscfa.2011.10.077.CrossRefGoogle Scholar
  14. Griffiths, R. A. (1993). The effect of pH on feeding behavior in newt larvae (Triturus, Amphibia). Journal of Zoology, 231, 285–290.  https://doi.org/10.1111/j.1469-7998.1993.tb01918.x.CrossRefGoogle Scholar
  15. Hangartner, S., Laurila, A., & Räsänen, K. (2011). Adaptive divergence of the moor frog (Rana arvalis) along an acidification gradient. BMC Evolutionary Biology, 11, 366.  https://doi.org/10.1186/1471-2148-11-366.CrossRefGoogle Scholar
  16. Hoffmann, A. A., & Parsons, P. A. (1997). Extreme environmental change and evolution. Cambridge: Cambridge University Press.Google Scholar
  17. Newman, R. A. (1989). Developmental platicity of Scaphiopus couchii tadpoles in an unpredictable environment. Ecology, 70, 1775–1787.  https://doi.org/10.2307/1938111.CrossRefGoogle Scholar
  18. Paruelo, J. M., Guerschman, J. P., & Verón, S. R. (2005). Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy, 15, 14–23.Google Scholar
  19. Pierce, B. A., & Montgomery, J. (1989). Effects of short-term acidification on growth rates of tadpoles. Journal of Herpetology, 23, 97–102.  https://doi.org/10.2307/1564014.CrossRefGoogle Scholar
  20. Preest, M. (1993). Mechanisms of growth rate in acid- exposed larval salamanders, Ambystoma maculatum. Physiological Zoology, 66, 686–707.  https://doi.org/10.1086/physzool.66.5.30163818.CrossRefGoogle Scholar
  21. Rands, M. R. W., Adams, W. M., Bennun, L., Butchart, S. H. M., Clements, A., Coomes, A., et al. (2010). Biodiversity conservation: challenges beyond 2010. Science, 329, 1298–1303.  https://doi.org/10.1126/science.1189138.CrossRefGoogle Scholar
  22. Räsänen, K., & Green, D. M. (2009). Acidification and its effects on amphibian populations. In H. Heatwole (Ed.), Amphibian Biology: Conservation and Ecology (pp. 3244–3267). Chipping Norton: Surrey Beatty and Sons.Google Scholar
  23. Räsänen, K., Laurila, A., & Merila, J. (2002). Carry-over effects of embryonic acid condition on development and growth of Rana temporaria tadpoles. Freshwater Biology, 47, 19–30.  https://doi.org/10.1046/j.1365-2427.2002.00777.x.CrossRefGoogle Scholar
  24. Rasband, W. (2017). ImageJ 1.49v. Bethesda: National Institute of Health.Google Scholar
  25. Renberg, I., Korsman, T., & Anderson, N. J. (1993). A temporal perspective of lake acidification in Sweden. Ambio, 22, 264–271.Google Scholar
  26. Scheffer, M., & Carpenter, S. R. (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology and Evolution, 18, 648–656.  https://doi.org/10.1016/j.tree.2003.09.002.CrossRefGoogle Scholar
  27. Teplitsky, C., Plénet, S., & Joly, P. (2003). Tadpoles responses to risk of fish introduction. Oecologia, 134, 270–277.  https://doi.org/10.1007/s00442-002-1106-2.CrossRefGoogle Scholar
  28. Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 67–677.  https://doi.org/10.1038/nature01014.CrossRefGoogle Scholar
  29. Touchon, J. C., Jimenez, R. R., Abinette, S. H., Vonesh, J. R., & Warkentin, K. M. (2013). Behavioral plasticity mitigates risk across environments and predators during anuran metamorphosis. Oecologia, 173, 801–811.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Centro de Ecología Aplicada del Litoral (CECOAL)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-UNNE)AMD CorrientesArgentina

Personalised recommendations