Advertisement

Carbon influence on metal distribution in sediment of Amazonian macrotidal estuaries of northeastern Brazil

  • Thays Thayanne Luz SantosEmail author
  • Rozane Valente Marins
  • Francisco José da Silva Dias
Article
  • 66 Downloads

Abstract

The present work aims to observe the spatial distribution of metals associated with carbon forms (fraction < 2 mm) in surface sediments of two macrotidal estuaries, São Marcos Bay and Anil River Estuary, which are located within the transition region between the Amazonian and the semi-arid northeast regions. Grain size, metal content (Al, Fe, Mn, Cu, Pb, Cr, Zn, and Ni), organic matter, and calcium carbonate content were determined. Grain size analyses showed the predominance of the sand-sized fraction < 2 mm due to the local hydrodynamic conditions. Anil River Estuary sediments exhibited high organic matter content due to both the mangrove outwelling and domestic sewage discharge. They also presented high calcium carbonate content as a result of abundant remnants of gastropod shells. Organic matter acted as the primary geochemical carrier for most metals in both estuaries, while calcium carbonate acted as the secondary carrier. Enrichment factors indicated Mn sediment contamination in São Marcos Bay and Fe, Pb, and Zn contamination in the Anil River Estuary. These results also suggest that São Marcos Bay is influenced by harbor activities, mostly ore shipment, whereas Anil River Estuary sediments are enriched in these metals as a result of domestic and hospital effluents reaching the urbanized drainage basin.

Keywords

Geochemistry Urbanization Harbor activities São Marcos Bay Anil Estuary 

Notes

Acknowledgement

The authors would like to thank Dr. S.A. Eschrique (Federal University of Maranhão) and all of the members of the Coastal Biogeochemistry Laboratory (Federal University of Ceará/LABOMAR) for technical support in the field and laboratory work during this research. We are extremely grateful to Prof. Dr. Luiz Drude de Lacerda for valuable comments and suggestions.

Funding information

This study received financial support from the Fundação de Amparo à Pesquisa e ao Desenvolvimento Científico e Tecnológico do Maranhão, Brazil (FAPEMA).

References

  1. Aguiar, J. E., Marins, R. V., & Almeida, M. D. (2007). Comparação de metodologias de digestão de sedimentos marinhos para caracterização da geoquímica de metais-traço na plataforma continental nordeste oriental brasileira. Geochimica Brasiliensis, 21(3), 304–323.  https://doi.org/10.21715/gb.v21i3.274.CrossRefGoogle Scholar
  2. Aguiar, J. E., de Lacerda, L. D., Miguens, F. C., & Marins, R. V. (2014). The geostatistics of the metal concentrations in sediments from the eastern Brazilian continental shelf in areas of gas and oil production. Journal of South American Earth Sciences, 51, 91–104.  https://doi.org/10.1016/j.jsames.2013.12.005.CrossRefGoogle Scholar
  3. Amaral, R., & Alfredini, P. (2010). Modelação Hidrossedimentológica no Canal de Acesso do Complexo Portuário do Maranhão. Revista Brasileira de Recursos Hídricos, 15(2), 5–14.  https://doi.org/10.21168/rbrh.v15n2.p5-14.CrossRefGoogle Scholar
  4. Amorim, E. P., Fávaro, D. I. T., Berbel, G. B. B., & Braga, E. S. (2007). Metal and trace element assessment of estuary sediments from Santos, Brazil, by neutron activation and atomic absorption techniques. International Nuclear Atlantic Conference. Santos.Google Scholar
  5. Amouei, A., Asgharnia, H., Fallah, H., Faraji, H., Barari, R., & Naghipour, D. (2015). Characteristics of effluent wastewater in hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope, 4(2), 4.  https://doi.org/10.17795/jhealthscope-23222.CrossRefGoogle Scholar
  6. Aprile, F. M., & Bouvy, M. (2008). Distribution and enrichment of heavy metals in sediments at the Tapacurá River Basin, North Eastern Brazil. Brazilian Journal of Aquatic Science and Technology, 12(1), 1–8.  https://doi.org/10.14210/bjast.v12n1.p1-8.CrossRefGoogle Scholar
  7. Azevedo, J. D. S., Hortellani, M. A., Eduardo, J., & Sarkis, D. S. (2012). Accumulation and distribution of metals in the tissues of two catfish species from Cananéia and Santos-São Vicente Estuaries. Brazilian Journal of Oceanography, 60(4), 463–472.  https://doi.org/10.1590/S1679-87592012000400005.CrossRefGoogle Scholar
  8. Bandeira, I. C. N. (2013). Geodiversidade do Estado do Maranhão (1st ed.). Teresina, Brasil: CPRM Serviço Geológico do Brasil.Google Scholar
  9. Bandeira, J. V., Salim, L. H., & Aun, P. E. (2005). The use of nuclear techniques for the quantification of sediment transport and bulk density of deposits – application to dredging and dumping operations optimisation and environmental impact studies. Santos, Brazil: International Nuclear Atlantic Conference.Google Scholar
  10. Baptista Neto, J. A., Peixoto, T. C. S., Smith, B. J., Mcalister, J. J., Patchineelam, S. M., Patchineelam, S. R., & Fonseca, E. M. (2013). Geochronology and heavy metal flux to Guanabara Bay, Rio de Janeiro state: a preliminary study. Anais da Academia Brasileira de Ciências, 85(4), 1317–1327.  https://doi.org/10.1590/0001-3765201394612.CrossRefGoogle Scholar
  11. Biati, A., Karbassi, A. R., Hassani, A. H., Monavari, S. M., & Moattar, F. (2010). Role of metal species in flocculation rate during estuarine mixing. International Journal of Environmental Science & Technology, 7(2), 327–336.  https://doi.org/10.1007/BF03326142.CrossRefGoogle Scholar
  12. Budiyanto, F., & Lestari, L. (2014). Distribution of metals in Cisanggarung estuary sediment, West Java, Indonesia. Marine Research in Indonesia, 39(1), 23–30.  https://doi.org/10.14203/mri.v39i1.90.CrossRefGoogle Scholar
  13. Costa, E. S., Grilo, C. F., Wolff, G. A., Thompson, A., Figueira, R. C. L., & Neto, R. R. (2014). Evaluation of metals and hydrocarbons in sediments from a tropical tidal flat estuary of Southern Brazil. Marine Pollution Bulletin, 92(1–2), 259–268.  https://doi.org/10.1016/j.marpolul.2014.11.028.CrossRefGoogle Scholar
  14. Costa, A. d. S., Santos, N. A., & Braga, C. C. (2016). Rainfall diagnosis in different time scales in Maranhão using the wavelet transform. Journal of Hyperspectral Remote Sensing, 6(2006), 295–304.  https://doi.org/10.5935/2237-2202.20160029.CrossRefGoogle Scholar
  15. De Melo, G. V., Neto, J. A. B., Malm, O., Fernandez, M. A. d. S., & Patchineelam, S. M. (2015). Composition and behaviour of heavy metals in suspended sediments in a tropical estuarine system. Environmental Earth Sciences, 73(3), 1331–1344.  https://doi.org/10.1007/s12665-014-3491-3.CrossRefGoogle Scholar
  16. De Paula Filho, F. J., Marins, R. V., de Lacerda, L. D., Aguiar, J. E., & Peres, T. F. (2015). Background values for evaluation of heavy metal contamination in sediments in the Parnaíba River Delta estuary, NE/Brazil. Marine Pollution Bulletin, 91(2), 424–428.  https://doi.org/10.1016/j.marpolbul.2014.08.022.CrossRefGoogle Scholar
  17. De Sousa, S. B. (2000). Sistema Aquífero da Ilha do Maranhão (MA). In Anais do 1st Joint World Congress on Groundwater (pp. 1–17). Fortaleza.Google Scholar
  18. Diniz, L. G. R., Jesus, M. S., Dominguez, L. A. E., Fillmann, G., Vieira, E. M., & Franco, T. C. R. S. (2014). First Appraisal of water contamination by antifouling booster biocide of 3rd Generation at Itaqui Harbor (São Luiz - Maranhão – Brazil). Journal of the Brazilian Chemical Society, 25(2), 380–388.  https://doi.org/10.5935/0103-5053.20130289.CrossRefGoogle Scholar
  19. Du Laing, G., De Vos, R., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science, 77(4), 589–602.  https://doi.org/10.1016/j.ecss.2007.10.017.CrossRefGoogle Scholar
  20. Duquesne, S., Newton, L. C., Giusti, L., Marriott, S. B., Stark, H. J., & Bird, D. J. (2006). Evidence for declining levels of heavy-metals in the Severn Estuary and Bristol Channel, U.K. and their spatial distribution in sediments. Environmental Pollution, 143(2), 187–196.  https://doi.org/10.1016/j.envpol.2005.12.002.CrossRefGoogle Scholar
  21. El-Robrini, M., Valter Marques, J., Silva, M. A. M. A. da, Robrini, M. H. S. E., Feitosa, A. C., Tarouco, J. E. F., et al. (2006). Maranhão. In D. Muehe (Ed.), Erosão e Progradação do Litoral Brasileiro. (pp. 87–130). Brasília. doi: https://doi.org/10.13140/RG.2.1.1916.8723
  22. Faria, M. d. M., & Sanchez, B. A. (2001). Geochemistry and mineralogy of recent sediments of Guanabara Bay (NE sector) and its major rivers - Rio de Janeiro State - Brazil. Anais da Academia Brasileira de Ciências, 73(1), 120–133.  https://doi.org/10.1590/S0001-37652001000100010.CrossRefGoogle Scholar
  23. Fernandes, A. M., Hissler, C., da Conceição, F. T., Spatti Junior, E. P., & Mortatti, J. (2016). Combined analysis of trace elements and isotopic composition of particulate organic matter in suspended sediment to assess their origin and flux in a tropical disturbed watershed. Environmental Pollution, 218, 844–854.  https://doi.org/10.1016/j.envpol.2016.08.008.CrossRefGoogle Scholar
  24. Folk, R. L., & Ward, W. C. (1957). Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27(1), 3–26.  https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D.CrossRefGoogle Scholar
  25. Gonsior, M., Valle, J., Schmitt-Kopplin, P., Hertkorn, N., Bastviken, D., Luek, J., Harir, M., Bastos, W., & Enrich-Prast, A. (2016). Chemodiversity of dissolved organic matter in the Amazon Basin. Biogeosciences, 13(14), 4279–4290.  https://doi.org/10.5194/bg-13-4279-2016.CrossRefGoogle Scholar
  26. González-Gorbeña, E., Rosman, P. C. C., & Qassim, R. Y. (2015). Assessment of the tidal current energy resource in São Marcos Bay, Brazil. Journal of Ocean Engineering and Marine Energy, 1(4), 421–433.  https://doi.org/10.1007/s40722-015-0031-5.CrossRefGoogle Scholar
  27. Ho, H. H., Swennen, R., & Van Damme, A. (2010). Distribution and contamination status of heavy metals in estuarine sediments near Cua Ong harbor, Ha Long Bay Vietnam. Geologica Belgica, 13(1–2), 37–47 https://popups.uliege.be:443/1374-8505/index.php?id=2844.Google Scholar
  28. Jolivet, C., Arrouays, D., & Bernoux, M. (1998). Comparison between analytical methods for organic carbon and organic matter determination in sandy spodosols of France. Communications in Soil Science and Plant Analysis, 29(15–16), 2227–2233.  https://doi.org/10.1080/00103629809370106.CrossRefGoogle Scholar
  29. Lacerda, L. D., Ribeiro, J., & Gueiros, B. B. (1999). Manganese dynamics in a mangrove mud flat tidal creek in SE Brazil. Mangroves and Salt Marshes, 3(2), 105–115.  https://doi.org/10.1023/A:1009992418964.CrossRefGoogle Scholar
  30. Laffite, A., Kilunga, P. I., Kayembe, J. M., Devarajan, N., Mulaji, C. K., Giuliani, G., Slaveykova, V. I., & Poté, J. (2016). Hospital effluents are one of several sources of metal, antibiotic resistance genes, and bacterial markers disseminated in sub-Saharan urban rivers. Frontiers in Microbiology, 7(JUL), 1–14.  https://doi.org/10.3389/fmicb.2016.01128.CrossRefGoogle Scholar
  31. Li, X., Shen, Z., Wai, O. W. H., & Li, Y.-S. (2001). Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Marine Pollution Bulletin, 42(3), 215–223.  https://doi.org/10.1016/S0025-326X(00)00145-4.CrossRefGoogle Scholar
  32. Loring, D. H., & Rantala, R. T. T. (1992). Manual for the geochemical analyses of marine sediments and suspended particulate matter. Earth-Science Reviews, 32(4), 235–283.  https://doi.org/10.1016/0012-8252(92)90001-A.CrossRefGoogle Scholar
  33. Marques, J. S. J., Rangel, T. P., Brito, F. P., Almeida, M. G., Salomão, M. S. M. B., Gobo, A. A. R., Souza-Santos, L. P., Araújo-Castro, C. M. V., Costa, M. F., & Rezende, C. E. (2011). Geoquímica de Metais em Sedimentos da Zona Estuarina do Complexo Industrial Porto de Suape, PE - Brasil. Revista da Gestão Costeira Integrada, 11(4), 379–387.  https://doi.org/10.5894/rgci183.CrossRefGoogle Scholar
  34. Medeiros, P., Seidel, M., Ward, N. D., Carpenter, E., Gomes, H., Niggemann, J., et al. (2015). Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean. Global Biogeochemical Cycles, 29, 677–690.  https://doi.org/10.1002/2015GB005115.CrossRefGoogle Scholar
  35. Meng, W., Qin, Y., Zheng, B., & Zhang, L. (2008). Heavy metal pollution in Tianjin Bohai Bay, China. Journal of Environmental Sciences, 20, 814–819.  https://doi.org/10.1016/S1001-0742(08)62131-2.CrossRefGoogle Scholar
  36. Miller, J. N., & Miller, J. C. (2010). Statistics and Chemometrics for Analytical Chemistry (Sixth., Vol. 46). Harlow: Pearson Education Limited.  https://doi.org/10.1198/tech.2004.s248.CrossRefGoogle Scholar
  37. Nayak, G. N. (2015). Bioavailability of metals in estuarine sediments and their possible impacts on the environment. Environmental and Social Sciences, 2(1), 1–4.Google Scholar
  38. Nelson, C. H., & Lamothe, P. J. (1993). Heavy metal anomalies in the Tinto and Odiel River and Estuary System , Spain. Estuaries, 16(3), 496–511.  https://doi.org/10.2307/1352597.CrossRefGoogle Scholar
  39. Nilin, J., Moreira, L. B., Aguiar, J. E., Marins, R., Denis, M. d. S. A., Tito, M. d. C. L., & Costa-Lotufo, L. V. (2013). Sediment quality assessment in a tropical estuary: The case of Ceará River, Northeastern Brazil. Marine Environmental Research, 91, 89–96.  https://doi.org/10.1016/j.marenvres.2013.02.009.CrossRefGoogle Scholar
  40. De Oliveira, R. C. B., & Marins, R. V. (2011). Dinâmica de metais-traço em solo e ambiente sedimentar estuarino como um fator determinante no aporte desses contaminantes para o ambiente aquático: Revisão. Revista Virtual de Química, 3(2), 88–102.  https://doi.org/10.5935/1984-6835.20110014.CrossRefGoogle Scholar
  41. Regnier, P., & Wollast, R. (1993). Distribution of trace-metals in suspended matter of the Scheldt Estuary. Marine Chemistry, 43(1–4), 3–19.  https://doi.org/10.1016/0304-4203(93)90212-7.CrossRefGoogle Scholar
  42. Rodrigues, C. A. L., Ribeiro, R. P., Santos, N. B., & Almeida, Z. S. (2016). Patterns of mollusc distribution in mangroves from the São Marcos Bay , coast of Maranhão State , Brazil. Acta Amazonica, 46(4), 391–400. doi:10.1590/1809-4392201600493Samaritano, L., Chagas, F. M., Bernardino, J. C. M., Siegle, E., Tessler, M. G., Uemura, S., & 1. (2013). Hydrodynamic modeling over a sand wave field at São Marcos. Marine and River Dune Dynamics. Bruges, Belgium: Marine and River Dune Dynamics.Google Scholar
  43. Samaritano, L., Chagas, F. M., Bernardino, J. C. M., Siegle, E., Tessler, M. G., & Uemura, S. (2013). Hydrodynamic modeling over a sand wave field at São Marcos. Marine and River Dune Dynamics. Bruges: Marine and River Dune Dynamics.Google Scholar
  44. Schlitzer, R. (2018). Ocean Data View. Bremerhaven: Alfred Wegener Institute. odv.awi.de.Google Scholar
  45. Taylor, S. R. (1964). Abundances of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 28(28), 1273–1285.  https://doi.org/10.1016/0016-7037(64)90129-2.CrossRefGoogle Scholar
  46. Williams, N., & Block, K. A. (2015). Spatial and vertical distribution of metals in sediment cores from Río Espíritu Santo estuary, Puerto Rico, United States. Marine Pollution Bulletin, 100(1), 445–452.  https://doi.org/10.1016/j.marpolbul.2015.08.007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Oceanography and LimnologyFederal University of MaranhãoSão LuísBrazil
  2. 2.Marine Science Institute/LABOMARFederal University of CearáFortalezaBrazil
  3. 3.Marine Science Institute/ICMarFederal University of MaranhãoSão LuísBrazil

Personalised recommendations