Advertisement

Drought hazard in Kazakhstan in 2000–2016: a remote sensing perspective

  • Olena DubovykEmail author
  • Gohar Ghazaryan
  • Javier González
  • Valerie Graw
  • Fabian Löw
  • Jonas Schreier
Article

Abstract

Droughts have significant negative impacts on livelihoods and economy of Kazakhstan. In this study, we assessed and characterized drought hazard events in Kazakhstan using satellite Remote Sensing time series for the period between 2000 and 2016. First, we calculated Vegetation Condition Index (VCI) and Standardized Enhanced Vegetation Index anomalies (ZEVI) based on 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) Enhanced Vegetation Index (EVI) time series. Second, we assessed vegetation cover changes for the observation period. Third, we analyzed different characteristics of the drought hazard as well as spatial distribution of the drought-affected areas within the country. The results confirmed that drought was one of the environmental challenges for Kazakhstan in 2000–2016. The obtained maps showed that drought hazard conditions were observed every year, though the areal coverage of the drought conditions largely varied between the analyzed years. The calculated drought indices indicated that in years 2000, 2008, 2010, 2011, 2012, and 2014, more than 50% of the area of the country were affected by drought conditions of different severity with the largest droughts in terms of the areal spread occurring in 2012 and 2014. We concluded that the pre-requisite of successful implementation of drought hazard and risk mitigation strategies is availability of spatially explicit, timely, and reliable information on drought hazard. This suggests the necessity of incorporation of remote sensing–based drought information, as was demonstrated in this paper, in the national drought monitoring system of Kazakhstan.

Keywords

Drought hazard and risk MODIS Drought early warning system For achieving sustainable development goals (SDG) Central Asia 

Notes

Funding information

The research support was provided by the German Federal Ministry of Education and Research (Project: GlobeDrought, grant no. 02WGR1457F BMBF Project ID: 02WGR1457A-F).

References

  1. Anyamba, A., & Tucker, C. J. (2005). Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003. Journal of Arid Environments, 63, 596–614.  https://doi.org/10.1016/j.jaridenv.2005.03.007.CrossRefGoogle Scholar
  2. Aw-Hassan, A., Korol, V., Nishanov, N., Djanibekov, U., Dubovyk, O., & Mirzabaev, A. (2016). Economics of Land Degradation and Improvement in Uzbekistan. In Economics of land degradation and improvement – a global assessment for sustainable development (pp. 651–682). Cham: Springer.CrossRefGoogle Scholar
  3. Barrett, T., Feola, G., Khusnitdinova, M., & Krylova, V. (2017). Adapting agricultural water use to climate change in a post-soviet context: challenges and opportunities in Southeast Kazakhstan. Human Ecology, 45, 747–762.  https://doi.org/10.1007/s10745-017-9947-9.CrossRefGoogle Scholar
  4. Beguería, S., Vicente-Serrano, S. M., Reig, F., & Latorre, B. (2014). Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology, 34, 3001–3023.CrossRefGoogle Scholar
  5. Below, R., Grover-Kopec, E., & Dilley, M. (2007). Documenting drought-related disasters: a global reassessment. Journal of Environment & Development, 16, 328–344.  https://doi.org/10.1177/1070496507306222.CrossRefGoogle Scholar
  6. de Beurs, K. M., Henebry, G. M., Owsley, B. C., & Sokolik, I. (2015). Using multiple remote sensing perspectives to identify and attribute land surface dynamics in Central Asia 2001–2013. Remote Sensing of Environment, 170, 48–61.  https://doi.org/10.1016/j.rse.2015.08.018.CrossRefGoogle Scholar
  7. Bhuiyan, C., Singh, R. P., & Kogan, F. N. (2006). Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 8, 289–302.  https://doi.org/10.1016/j.jag.2006.03.002.CrossRefGoogle Scholar
  8. Bokusheva, R., Kogan, F., Vitkovskaya, I., Conradt, S., & Batyrbayeva, M. (2016). Satellite-based vegetation health indices as a criteria for insuring against drought-related yield losses. Agricultural and Forest Meteorology, 220, 200–206.  https://doi.org/10.1016/j.agrformet.2015.12.066.CrossRefGoogle Scholar
  9. Broka, S., Giertz, Asa, Christensen, G., Rasmussen, D., Morgounov, A., Fileccia, T., Rubaiza, R.. (2016) Kazakhstan agricultural sector risk assessmentGoogle Scholar
  10. Carrao, H., Naumann, G., & Barbosa, P. (2016). Mapping global patterns of drought risk: an empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Global Environmental Change, 39, 108–124.CrossRefGoogle Scholar
  11. Chen, X., Bai, J., Li, X., Luo, G., Li, J., & Li, B. L. (2013). Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Current Opinion in Environment Sustainability, 5, 116–127.  https://doi.org/10.1016/j.cosust.2012.12.005.CrossRefGoogle Scholar
  12. Dubovyk, O.. (2013) Multi-scale targeting of land degradation in northern Uzbekistan using satellite remote sensingGoogle Scholar
  13. Dubovyk, O., Landmann, T., Dietz, A., & Menz, G. (2016). Quantifying the impacts of environmental factors on vegetation dynamics over climatic and management gradients of Central Asia. Remote Sensing, 8, 600.  https://doi.org/10.3390/rs8070600.CrossRefGoogle Scholar
  14. Eisfelder, C., Klein, I., Niklaus, M., & Kuenzer, C. (2014). Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables. Journal of Arid Environments, 103, 17–30.  https://doi.org/10.1016/j.jaridenv.2013.12.005.CrossRefGoogle Scholar
  15. Esekin, B.K.. (2000) Kazakhstan, State of the environment. Natl. Environ. Cent. Sustain. Dev. Repub. KazakhstanGoogle Scholar
  16. FAO, The World Bank. (2019) understanding the drought impact of El Niño/La Niña in the grain production areas in Eastern Europe and Central Asia: Russia, Ukraine and Kazakhstan., http://www.fao.org/3/ca3758en/ca3758en.pdf
  17. Graw, V., Ghazaryan, G., Dall, K., Delgado Gómez, A., Abdel-Hamid, A., Jordaan, A., Piroska, R., Post, J., Szarzynski, J., Walz, Y., & Dubovyk, O. (2017). Drought dynamics and vegetation productivity in different land management systems of Eastern Cape, South Africa—a remote sensing perspective. Sustainability., 9, 1728.  https://doi.org/10.3390/su9101728.CrossRefGoogle Scholar
  18. Gupta, S.C.. (2011) Fundamentals of statistics. Himalaya Publishing House.Google Scholar
  19. Hamidov, A., Helming, K., & Balla, D. (2016). Impact of agricultural land use in Central Asia: a review. Agronomy for Sustainable Development, 36, 6.  https://doi.org/10.1007/s13593-015-0337-7.CrossRefGoogle Scholar
  20. Hao, Z., Hao, F., Singh, V. P., Ouyang, W., & Cheng, H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling and Software, 91, 199–209.  https://doi.org/10.1016/j.envsoft.2017.02.008.CrossRefGoogle Scholar
  21. Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. International Journal of Climatology, 34, 623–642.CrossRefGoogle Scholar
  22. Hoaglin, D.C., Mosteller, F., Tukey, J.W.. (2000) Understanding robust and exploratory data analysisGoogle Scholar
  23. Huang, A., Zhou, Y., Zhang, Y., Huang, D., Zhao, Y., & Wu, H. (2014). Changes of the annual precipitation over Central Asia in the twenty-first century projected by multimodels of CMIP5. Journal of Climate, 27, 6627–6646.  https://doi.org/10.1175/JCLI-D-14-00070.1.CrossRefGoogle Scholar
  24. Jiang, L., Jiapaer, G., Bao, A., Guo, H., & Ndayisaba, F. (2017). Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599–600, 967–980.  https://doi.org/10.1016/j.scitotenv.2017.05.012.CrossRefGoogle Scholar
  25. Kariyeva, J., van Leeuwen, W. J. D., & Woodhouse, C. A. (2012). Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Frontiers in Earth Science, 6, 206–225.  https://doi.org/10.1007/s11707-012-0315-1.CrossRefGoogle Scholar
  26. Kendall, M. G. (1938). A new measure of rank correlation. Biometrika., 30, 81–93.CrossRefGoogle Scholar
  27. Klein, I., Gessner, U., & Künzer, C. (2014). Generation of up to date land cover maps for Central Asia. In Novel measurement and assessment tools for monitoring and management of land and water resources in agricultural landscapes of Central Asia (pp. 329–346). Cham: Springer.CrossRefGoogle Scholar
  28. Kogan, F. N. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11, 1405–1419.  https://doi.org/10.1080/01431169008955102.CrossRefGoogle Scholar
  29. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100.  https://doi.org/10.1016/0273-1177(95)00079-T.CrossRefGoogle Scholar
  30. Kogan, F. N. (1997). Global drought watch from space. Bulletin of the American Meteorological Society, 78, 621–636.CrossRefGoogle Scholar
  31. Kogan, F. (2002). World droughts in the new millennium from AVHRR-based vegetation health indices. EOS. Transactions of the American Geophysical Union, 83, 557–563.  https://doi.org/10.1029/2002EO000382.CrossRefGoogle Scholar
  32. Kozhakhmetov, P., Zh., Nikiforova, L.N.. (2016) Weather elements of Kazakhstan in the context of global climate change, https://new.kazhydromet.kz/upload/pagefiles/nits/%D0%A3%D0%9A%D0%98%20%D0%9D%D0%98%D0%A6/eng/Climate%20Change_09-2017_ENG_Light.pdf
  33. Kraemer, R., Prishchepov, A. V., Müller, D., Kuemmerle, T., Radeloff, V. C., Dara, A., Terekhov, A., & Frühauf, M. (2015). Long-term agricultural land-cover change and potential for cropland expansion in the former Virgin Lands area of Kazakhstan. Environmental Research Letters, 10, 054012.  https://doi.org/10.1088/1748-9326/10/5/054012.CrossRefGoogle Scholar
  34. Kudebayeva, A., & Barrientos, A. (2017). A decade of poverty reduction in Kazakhstan 2001–2009: growth and/or redistribution? Journal of International Development, 29, 1166–1186.CrossRefGoogle Scholar
  35. Liefert, W., Liefert, O., Vocke, G., & Allen, E. (2010). Former Soviet Union region to play larger role in meeting world wheat needs. Amber Waves, 8, 12–19.Google Scholar
  36. Lioubimtseva, E. (2015). A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin. Environment and Earth Science, 73, 719–729.  https://doi.org/10.1007/s12665-014-3104-1.CrossRefGoogle Scholar
  37. Lioubimtseva, E., & Cole, R. (2006). Uncertainties of climate change in arid environments of Central Asia. Reviews in Fisheries Science, 14, 29–49.  https://doi.org/10.1080/10641260500340603.CrossRefGoogle Scholar
  38. Lioubimtseva, E., Cole, R., Adams, J. M., & Kapustin, G. (2005). Impacts of climate and land-cover changes in arid lands of Central Asia. Journal of Arid Environments, 62, 285–308.  https://doi.org/10.1016/j.jaridenv.2004.11.005.CrossRefGoogle Scholar
  39. Liouimtseva, E.. (2009) Human dimensions of climate change in arid and semi-arid environments: a case study of post-Soviet Central AsiaGoogle Scholar
  40. Löw, F., Fliemann, E., Abdullaev, I., Conrad, C., & Lamers, J. P. A. (2015). Mapping abandoned agricultural land in Kyzyl-Orda, Kazakhstan using satellite remote sensing. Applied Geography, 62, 377–390.  https://doi.org/10.1016/j.apgeog.2015.05.009.CrossRefGoogle Scholar
  41. Löw, F., Biradar, C., Dubovyk, O., Fliemann, E., Akramkhanov, A., Vallejo, A. N., & Waldner, F. (2017). Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIScience & Remote Sensing, 55, 539–567. 0, 1–29.  https://doi.org/10.1080/15481603.2017.1414010.CrossRefGoogle Scholar
  42. Lu, L., Guo, H., Kuenzer, C., Klein, I., Zhang, L., & Li, X. (2014). Analyzing phenological changes with remote sensing data in Central Asia. IOP Conference Series: Earth and Environmental Science, 17, 012005.  https://doi.org/10.1088/1755-1315/17/1/012005.CrossRefGoogle Scholar
  43. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica:Journal of Economic and Social, 13, 245–259.CrossRefGoogle Scholar
  44. Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277–286.  https://doi.org/10.1016/j.rse.2016.02.064.CrossRefGoogle Scholar
  45. McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (pp. 179–183). MA: American Meteorological Society Boston.Google Scholar
  46. Meyfroidt, P., Schierhorn, F., Prishchepov, A. V., Müller, D., & Kuemmerle, T. (2016). Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan. Global Environmental Change, 37, 1–15.  https://doi.org/10.1016/j.gloenvcha.2016.01.003.CrossRefGoogle Scholar
  47. Ministry of Energy of the Republic of Kazakhstan Republican state enterprise “Kazhydromet”, (2015) Annual bulletin on climate change and climate monitoring in Kazakhstan, https://kazhydromet.kz/upload/pdf/climat/en_1495436641.pdf, (2016)
  48. Mirzabaev, A., Goedecke, J., Dubovyk, O., Djanibekov, U., Le, Q. B., & Aw-Hassan, A. (2016). Economics of land degradation in Central Asia. In Economics of land degradation and improvement – a global assessment for sustainable development (pp. 261–290). Cham: Springer.CrossRefGoogle Scholar
  49. National Drought Mitigation Center, (2008) Food and Agriculture Organization: The Near East Drought Planning ManualGoogle Scholar
  50. Neeti, N., & Eastman, J. R. (2011). A contextual Mann-Kendall approach for the assessment of trend significance in image time series. Transactions in GIS, 15, 599–611.  https://doi.org/10.1111/j.1467-9671.2011.01280.x.CrossRefGoogle Scholar
  51. Parkinson, C.L., Greenstone, R., Closs, J.. (2000) EOS data products handbook. Volume 2Google Scholar
  52. Parmentier, B., & Eastman, J. R. (2014). Land transitions from multivariate time series: using seasonal trend analysis and segmentation to detect land-cover changes. International Journal of Remote Sensing, 35, 671–692.  https://doi.org/10.1080/01431161.2013.871595.CrossRefGoogle Scholar
  53. Prishchepov, A. V., Radeloff, V. C., Baumann, M., Kuemmerle, T., & Müller, D. (2012). Effects of institutional changes on land use: agricultural land abandonment during the transition from state-command to market-driven economies in post-Soviet Eastern Europe. Environmental Research Letters, 7, 024021.  https://doi.org/10.1088/1748-9326/7/2/024021.CrossRefGoogle Scholar
  54. Propastin, P.A., Kappas, M., Muratova, N.R.. (2008) Inter-annual changes in vegetation activities and their relationship to temperature and precipitation in Central Asia from 1982 to 2003. Journal of Environmental Informatics 12Google Scholar
  55. Quiring, S. M., & Ganesh, S. (2010). Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agricultural and Forest Meteorology, 150, 330–339.  https://doi.org/10.1016/j.agrformet.2009.11.015.CrossRefGoogle Scholar
  56. Republican State Enterprise “Kazhydromet”. (2015) 6. Assessment report on climate change in KazakhstanGoogle Scholar
  57. Rojas, O., Piersante, A., Cumani, M., Li, Y.. (2019) Understanding the drought impact of El Niño/La Niña in the grain production areas in Eastern Europe and Central Asia. World Bank PublGoogle Scholar
  58. Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1389.  https://doi.org/10.1080/01621459.1968.10480934.CrossRefGoogle Scholar
  59. Siebert, S., Webber, H., & Rezaei, E. E. (2017). Weather impacts on crop yields-searching for simple answers to a complex problem. Environmental Research Letters, 12, 081001.CrossRefGoogle Scholar
  60. Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s contributions to economics and econometrics (pp. 345–381). Dordrecht: Springer.CrossRefGoogle Scholar
  61. Unganai, L. S., & Kogan, F. N. (1998). Drought monitoring and corn yield estimation in Southern Africa from AVHRR Data. Remote Sensing of Environment, 63, 219–232.  https://doi.org/10.1016/S0034-4257(97)00132-6.CrossRefGoogle Scholar
  62. Van Hoolst, R., Eerens, H., Haesen, D., Royer, A., Bydekerke, L., Rojas, O., Li, Y., & Racionzer, P. (2016). FAO’s AVHRR-based Agricultural Stress Index System (ASIS) for global drought monitoring. International Journal of Remote Sensing, 37, 418–439.CrossRefGoogle Scholar
  63. Vermote, E. F., El Saleous, N. Z., & Justice, C. O. (2002). Atmospheric correction of MODIS data in the visible to middle infrared: first results. Remote Sensing of Environment, 83, 97–111.CrossRefGoogle Scholar
  64. Vicente-Serrano, S., Beguería, S., Latorre, B., Reig, F.. (2019) SPEI, the Standardised Precipitation-Evapotranspiration Index, https://spei.csic.es/
  65. Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the drought phenomenon: the role of definitions. Water International, 10, 111–120.CrossRefGoogle Scholar
  66. World Bank. (2005) Drought : management and mitigation assessment for Central Asia and the Caucasus (English), http://documents.worldbank.org/curated/en/135721468036310201/Drought-management-and-mitigation-assessment-for-Central-Asia-and-the-Caucasus
  67. World Bank. (2006) Drought management and mitigation assessment for Central Asia and the Caucasus: regional and country profiles and strategies, http://siteresources.worldbank.org/INTECAREGTOPRURDEV/Resources/CentralAsiaCaucasusDroughtProfiles&Strategies-Eng.pdf
  68. Wu, J., Zhou, L., Mo, X., Zhou, H., Zhang, J., & Jia, R. (2015). Drought monitoring and analysis in China based on the Integrated Surface Drought Index (ISDI). International Journal of Applied Earth Observation and Geoinformation, 41, 23–33.  https://doi.org/10.1016/j.jag.2015.04.006.CrossRefGoogle Scholar
  69. Xu, L., Zhou, H., Du, L., Yao, H., & Wang, H. (2015). Precipitation trends and variability from 1950 to 2000 in arid lands of Central Asia. Journal of Arid Land, 7, 514–526.  https://doi.org/10.1007/s40333-015-0045-9.CrossRefGoogle Scholar
  70. Xu, H., Wang, X., & Zhang, X. (2016). Decreased vegetation growth in response to summer drought in Central Asia from 2000 to 2012. International Journal of Applied Earth Observation and Geoinformation, 52, 390–402.  https://doi.org/10.1016/j.jag.2016.07.010.CrossRefGoogle Scholar
  71. Zambrano, F., Lillo-Saavedra, M., Verbist, K., & Lagos, O. (2016). Sixteen years of agricultural drought assessment of the BioBío region in Chile Using a 250 m Resolution Vegetation Condition Index (VCI). Remote Sensing, 8, 530.  https://doi.org/10.3390/rs8060530.CrossRefGoogle Scholar
  72. Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sensing of Environment, 134, 12–23.  https://doi.org/10.1016/j.rse.2013.02.023.CrossRefGoogle Scholar
  73. Zhang, L., Jiao, W., Zhang, H., Huang, C., & Tong, Q. (2017a). Studying drought phenomena in the Continental United States in 2011 and 2012 using various drought indices. Remote Sensing of Environment, 190, 96–106.  https://doi.org/10.1016/j.rse.2016.12.010.CrossRefGoogle Scholar
  74. Zhang, X., Chen, N., Li, J., Chen, Z., & Niyogi, D. (2017b). Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 188, 141–163.  https://doi.org/10.1016/j.rse.2016.10.045.CrossRefGoogle Scholar
  75. Zhou, Y., Zhang, L., Fensholt, R., Wang, K., Vitkovskaya, I., & Tian, F. (2015). Climate contributions to vegetation variations in Central Asian Drylands: pre- and post-USSR collapse. Remote Sensing, 7, 2449–2470.  https://doi.org/10.3390/rs70302449.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Remote Sensing of Land Surfaces (ZFL)University of BonnBonnGermany
  2. 2.Remote Sensing Research Group (RSRG), Department of GeographyUniversity of BonnBonnGermany
  3. 3.MapTailor Geospatial Consulting GbRBonnGermany

Personalised recommendations