Impacts of climate change and human factors on land cover change in inland mountain protected areas: a case study of the Qilian Mountain National Nature Reserve in China

  • Dawen QianEmail author
  • Guangmin Cao
  • Yangong Du
  • Qian Li
  • Xiaowei Guo


Over the past few decades, natural reserves have been affected by both climate change and human activities, and their land cover has changed dramatically, especially in mountain reserves, which are more sensitive to climate change and human activities. This paper used long-term Landsat and MODIS NDVI remote sensing data to monitor the changes of land cover and vegetation conditions in the Qilian Mountain National Nature Reserve (QMNNR) in China from 1975 to 2015, and analysed the impacts of climate change and human activities in combination with meteorological and socioeconomic data. The results show that the land cover structure of the QMNNR has remained stable over the past 40 years, but the total area of natural vegetation has decreased by 49.55 km2, the artificial surface and cropland has expanded by 13.68 and 32.57 km2 in some areas, respectively, and the glacier has retreated by 33.34 km2 as a whole. The warming and humidification trend of the climate is the leading factor for glacial retreat and the improvement of the overall vegetation condition, while population growth and economic benefits lead to the expansion of cropland and artificial surfaces in some areas, thus causing the reduction of 18.80 and 28.30 km2 in shrubland and grassland. This study proves that the system of protected areas plays a key role in maintaining the stability of the ecosystem structure and that reducing the population density around the protected areas and changing the mode of economic development can effectively reduce the intensity of human interference. Under the background of climate warming, the change of the ecosystem function in mountain protected areas is full of uncertainty, so management and protection strategies need to be studied in depth.


Land cover change Qilian Mountains Landsat Nature reserve 


Funding information

This study is supported by the National Natural Science Foundation of China (Key Program 41730752; General Program 3177053), “Light of West China” Program of the Chinese Academy of Sciences and Qinghai Innovation Platform Construction Project (2017-ZJ-Y20).

Supplementary material

10661_2019_7619_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23 kb)


  1. Alcaraz-Segura, D., Cabello, J., Paruelo, J. M., & Delibes, M. (2009). Use of descriptors of ecosystem functioning for monitoring a national park network: a remote sensing approach. Environmental Management, 43(1), 38–48. Scholar
  2. Andam, K. S., Ferraro, P. J., Pfaff, A., Sanchez-Azofeifa, G. A., & Robalino, J. A. (2008). Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences, 105(42), 16089–16094. Scholar
  3. Araújo, M. B., Alagador, D., Cabeza, M., Nogués-Bravo, D., & Thuiller, W. (2011). Climate change threatens European conservation areas. Ecology Letters, 14(5), 484–492. Scholar
  4. Blom, A., van Zalinge, R., Mbea, E., Heitkonig, I. M. A., & Prins, H. H. T. (2004). Human impact on wildlife populations within a protected Central African forest. African Journal of Ecology, 42(1), 23–31. Scholar
  5. Buytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the Andean páramos. Earth-Science Reviews, 79(1–2), 53–72. Scholar
  6. Carlón Allende, T., Mendoza, M. E., Villanueva Díaz, J., & Li, Y. (2018). Climatic response of Pinus cembroides Zucc. radial growth in Sierra del Cubo, Guanajuato, Mexico. Trees - Structure and Function, 32(5), 1387–1399. Scholar
  7. Chaudhary, S., Tshering, D., Phuntsho, T., Uddin, K., Shakya, B., & Chettri, N. (2017). Impact of land cover change on a mountain ecosystem and its services: case study from the Phobjikha valley, Bhutan. Ecosystem Health and Sustainability, 3(9), 1393314. Scholar
  8. Claudet, J., García-Charton, J. A., & Lenfant, P. (2011). Efectos Combinados de Niveles de Protección y Variables Ambientales en Resoluciones Espaciales Diferentes Sobre Ensambles de Peces en un Área Marina Protegida. Conservation Biology, 25(1), 105–114. Scholar
  9. DeFries, R., Hansen, A., Turner, B. L., Reid, R., & Liu, J. (2007). Land use change around protected areas: management to balance human needs and ecological function. Ecological Applications, 17, 1031–1038. Scholar
  10. Deng, S., Yang, T., Zeng, B., Zhu, X., & Xu, H. (2013). Vegetation cover variation in the Qilian Mountains and its response to climate change in 2000–2011. Journal of Mountain Science, 10(6), 1050–1062. Scholar
  11. Dudley, N. (2008). Guidelines for applying protected area management categories. Scholar
  12. Dwyer, J., & Schmidt, G. (2006). The MODIS reprojection tool. In Earth science satellite remote sensing (pp. 162–177). Berlin: Springer. Scholar
  13. Eklund, J., Blanchet, F. G., Nyman, J., Rocha, R., Virtanen, T., & Cabeza, M. (2016). Contrasting spatial and temporal trends of protected area effectiveness in mitigating deforestation in Madagascar. Biological Conservation, 203, 290–297. Scholar
  14. Fiallo, E. A., & Jacobson, S. K. (1995). Local communities and protected areas: attitudes of rural residents towards conservation and Machalilla National Park, Ecuador. Environmental Conservation, 22(3), 241–249. Scholar
  15. Figueroa, F., & Sánchez-Cordero, V. (2008). Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodiversity and Conservation, 17(13), 3223–3240. Scholar
  16. Geneletti, D., & van Duren, I. (2008). Protected area zoning for conservation and use: a combination of spatial multicriteria and multiobjective evaluation. Landscape and Urban Planning, 85(2), 97–110. Scholar
  17. Hirsch, R. M., & Slack, J. R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resources Research, 20(6), 727–732. Scholar
  18. Hou, W., Gao, J., Wu, S., Dai, E., Hou, W., Gao, J., et al. (2015). Interannual variations in growing-season NDVI and its correlation with climate variables in the southwestern karst region of China. Remote Sensing, 7(9), 11105–11124. Scholar
  19. Janssen, L. L. F., & van der Wel, F. J. M. (1994). Accuracy assessment of satellite derived land-cover data: a review. Photogrammetric Engineering & Remote Sensing, 60(4), 419–426.Google Scholar
  20. Jiang, L., Jiapaer, G., Bao, A., Guo, H., & Ndayisaba, F. (2017). Vegetation dynamics and responses to climate change and human activities in Central Asia. Science of the Total Environment, 599–600, 967–980. Scholar
  21. Jiang, C., Nath, R., Labzovskii, L., & Wang, D. (2018). Integrating ecosystem services into effectiveness assessment of ecological restoration program in northern China’s arid areas: insights from the Beijing-Tianjin sandstorm source region. Land Use Policy, 75, 201–214. Scholar
  22. Jin, X., Wan, L., Zhang, Y.-K., Hu, G., Schaepman, M. E., Clevers, J. G. P. W., & Su, Z. B. (2009). Quantification of spatial distribution of vegetation in the Qilian Mountain area with MODIS NDVI. International Journal of Remote Sensing, 30(21), 5751–5766. Scholar
  23. Jönsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite sensor data. Computers and Geosciences, 30(8), 833–845. Scholar
  24. Josefsson, T., Hörnberg, G., & Östlund, L. (2009). Long-term human impact and vegetation changes in a boreal forest reserve: implications for the use of protected areas as ecological references. Ecosystems, 12(6), 1017–1036. Scholar
  25. Kang, S., Xu, Y., You, Q., Flügel, W.-A., Pepin, N., Yao, T., et al. (2010). IOP Publishing). Review of climate and cryospheric change in the Tibetan Plateau. Environmental Research Letters, 015101.
  26. Kendall, M. G. (1955). Rank correlation methods (2nd ed.). New York: Hafner.Google Scholar
  27. Körner, C., & Spehn, E. M. (2002). Mountain biodiversity: a global assessment. Parthenon Pub. Group. Accessed 19 Oct 2018.
  28. Kumar, S., Simonson, S. E., & Stohlgren, T. J. (2009). Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA. Biodiversity and Conservation, 18(3), 739–763. Scholar
  29. Li, N., Yan, C. Z., & Xie, J. L. (2015). Remote sensing monitoring recent rapid increase of coal mining activity of an important energy base in northern China, a case study of Mu Us Sandy Land. Resources, Conservation and Recycling, 94, 129–135. Scholar
  30. Linkie, M., Smith, R. J., & Leader-Williams, N. (2004). Mapping and predicting deforestation patterns in the lowlands of Sumatra. Biodiversity and Conservation, 13(10), 1809–1818. Scholar
  31. Mann, H. B. (1945). Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 13, 245–259.CrossRefGoogle Scholar
  32. Maselli, F. (2004). Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data. Remote Sensing of Environment, 89(4), 423–433. Scholar
  33. Mendoza, M. E., Bocco, G., Bravo, M., López Granados, E., & Osterkamp, W. R. (2006). Predicting water-surface fluctuation of continental lakes: a RS and GIS based approach in Central Mexico. Water Resources Management, 20(2), 291–311. Scholar
  34. Montesino Pouzols, F., Toivonen, T., Di Minin, E., Kukkala, A. S., Kullberg, P., Kuusterä, J., et al. (2014). Global protected area expansion is compromised by projected land-use and parochialism. Nature, 516(7531), 383–386. Scholar
  35. Mtui, D. T., Lepczyk, C. A., Chen, Q., Miura, T., & Cox, L. J. (2017). Assessing multi-decadal land-cover – land-use change in two wildlife protected areas in Tanzania using Landsat imagery. PLoS One, 12(9), e0185468. Scholar
  36. Nagendra, H. (2008). Do parks work? Impact of protected areas on land cover clearing. Ambio: A Journal of the Human Environment, 37(5), 330–337. Scholar
  37. Nasri, M., & Modarres, R. (2009). Dry spell trend analysis of Isfahan Province, Iran. International Journal of Climatology, 29(10), 1430–1438. Scholar
  38. Oliveira, P. J. C., Asner, G. P., Knapp, D. E., Almeyda, A., Galvan-Gildemeister, R., Keene, S., Raybin, R. F., & Smith, R. C. (2007). Land-use allocation protects the Peruvian Amazon. Science, 317(5842), 1233–1236. Scholar
  39. Ouyang, Z., Zheng, H., Xiao, Y., Polasky, S., Liu, J., Xu, W., Wang, Q., Zhang, L., Xiao, Y., Rao, E., Jiang, L., Lu, F., Wang, X., Yang, G., Gong, S., Wu, B., Zeng, Y., Yang, W., & Daily, G. C. (2016). Improvements in ecosystem services from investments in natural capital. Science, 352(6292), 1455–1459. Scholar
  40. Peters, R. L., & Darling, J. D. S. (1985). The greenhouse effect and nature reserves. BioScience, 35(11), 707–717. Scholar
  41. Pounds, J. A., Fogden, M. P. L., & Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature, 398(6728), 611–615. Scholar
  42. Scharsich, V., Mtata, K., Hauhs, M., Lange, H., & Bogner, C. (2017). Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sensing of Environment, 194, 278–286. Scholar
  43. Sieber, A., Kuemmerle, T., Prishchepov, A. V., Wendland, K. J., Baumann, M., Radeloff, V. C., Baskin, L. M., & Hostert, P. (2013). Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sensing of Environment, 133(2), 38–51. Scholar
  44. Sneyers, R. (1990). On the statistical analysis of series of observations. Geneva: Secretariat of the World Meteorological Organization.Google Scholar
  45. Songer, M., Aung, M., Senior, B., Defries, R., & Leimgruber, P. (2009). Spatial and temporal deforestation dynamics in protected and unprotected dry forests: a case study from Myanmar (Burma). Biodiversity and Conservation, 18(4), 1001–1018. Scholar
  46. Sun, F., Lyu, Y., Fu, B., & Hu, J. (2016). Hydrological services by mountain ecosystems in Qilian Mountain of China: a review. Chinese Geographical Science, 26(2), 174–187. Scholar
  47. Tabari, H., Hosseinzadeh Talaee, P., Ezani, A., & Shifteh Some’e, B. (2012). Shift changes and monotonic trends in autocorrelated temperature series over Iran. Theoretical and Applied Climatology, 109(1–2), 95–108. Scholar
  48. Tian, H., Yang, T., & Liu, Q. (2014). Climate change and glacier area shrinkage in the Qilian mountains, China, from 1956 to 2010. Annals of Glaciology, 55(66), 187–197. Scholar
  49. Turner, B. L. (1990). The earth as transformed by human action: global and regional changes in the biosphere over the past 300 years. Cambridge University Press with Clark University. Accessed 18 Oct 2018.
  50. UNEP-WCMC and IUCN. (2016). Protected planet report 2016. How protected areas contribute to achieving global targets for biodiversity.
  51. Verburg, P. H., Overmars, K. P., Huigen, M. G. A., de Groot, W. T., & Veldkamp, A. (2006). Analysis of the effects of land use change on protected areas in the Philippines. Applied Geography, 26(2), 153–173. Scholar
  52. Verburg, P. H., van de Steeg, J., Veldkamp, A., & Willemen, L. (2009). From land cover change to land function dynamics: a major challenge to improve land characterization. Journal of Environmental Management, 90(3), 1327–1335. Scholar
  53. Wu, X., Dong, S., Liu, S., Su, X., Han, Y., Shi, J., Zhang, Y., Zhao, Z., Sha, W., Zhang, X., Gao, F., & Xu, D. (2017). Predicting the shift of threatened ungulates’ habitats with climate change in Altun Mountain National Nature Reserve of the northwestern Qinghai-Tibetan plateau. Climatic Change, 142(3–4), 331–344. Scholar
  54. Xu, W., Li, X., Pimm, S. L., Hull, V., Zhang, J., Zhang, L., Xiao, Y., Zheng, H., & Ouyang, Z. (2016). The effectiveness of the zoning of China’s protected areas. Biological Conservation, 204, 231–236. Scholar
  55. Yan, M., Tian, X., Li, Z., Chen, E., Li, C., & Fan, W. (2016). A long-term simulation of forest carbon fluxes over the Qilian Mountains. International Journal of Applied Earth Observation and Geoinformation, 52, 515–526. Scholar
  56. Yao, T., Pu, J., Lu, A., Wang, Y., & Yu, W. (2007). Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arctic, Antarctic, and Alpine Research, 39(4), 642–650.[YAO]2.0.CO;2.CrossRefGoogle Scholar
  57. Yao, Z., Zhao, C., Yang, K., Liu, W., Li, Y., You, J., & Xiao, J. (2016). Alpine grassland degradation in the Qilian Mountains, China—a case study in Damaying grassland. CATENA, 137, 494–500. Scholar
  58. Zarenistanak, M., Dhorde, A. G., & Kripalani, R. H. (2014). Trend analysis and change point detection of annual and seasonal precipitation and temperature series over southwest Iran. Journal of Earth System Science, 123(2), 281–295. Scholar
  59. Zhai, R., & Tao, F. (2017). Contributions of climate change and human activities to runoff change in seven typical catchments across China, 605–606, 219–229. Accessed 17 Nov 2017.
  60. Zhang, L., Wu, B. B., Li, X., & Xing, Q. (2014a). Classification system of China land cover for carbon budget. Acta Ecologica Sinica, 34(24), 7518–7166. Scholar
  61. Zhang, W., Cheng, W., Ren, Z., Gao, Y., Chen, J., Li, B., & Zhou, C. (2014b). Simulation of permafrost distributions in the Qilian Mountains using a multi-criteria approach. Cold Regions Science and Technology, 103, 63–73. Scholar
  62. Zhou, D., Zhao, S., & Zhu, C. (2012). The grain for green project induced land cover change in the loess plateau: a case study with Ansai County, Shanxi Province, China. Ecological Indicators, 23, 88–94. Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Key Laboratory of Cold Regions Restoration Ecology, Qinghai Province, Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina

Personalised recommendations