Estimation of particulate matter and gaseous concentrations using low-cost sensors from broiler houses

  • Roheela YasmeenEmail author
  • Zulfiqar Ali
  • Sean Tyrrel
  • Zaheer Ahmad Nasir


Particulate and gaseous emissions from intensive poultry facilities are major public and environmental health concern. The present study was aimed at exploratively monitoring particulate matter (PM) and gaseous concentrations in controlled-environment facilities using low-cost sensors in Lahore, Pakistan. The indoors and outdoors of 18 broiler houses, grouped into three categories based on the age of birds: group I (1–20 days), group II (21–30 days) and group III (31–40 days), were examined. Low-cost sensors Dylos 1700 and Aeroqual 500 series with different gas sensor heads were used to monitor PM and different gases such as nitrogen dioxide (NO2), hydrogen sulphide (H2S), carbon dioxide (CO2) and methane (CH4), respectively. Overall, the mean PM and gaseous concentrations increased with the age and activity of birds as compared with the non-activity time of birds. Statistically significant differences were observed in all measured parameters among the groups. The negative correlation between indoor and outdoor environments for PM and gas concentrations at some broiler houses demonstrates the contribution of additional sources to emissions in outdoor environments. The findings contribute to our knowledge of temporal characteristics of particulate and gaseous concentrations from poultry facilities particularly in Pakistan and generally to the capability of using low-cost sensors to evaluate emissions from such facilities.


Poultry facilities Controlled environment PM Gases Low-cost sensors 



Roheela Yasmeen’s research visit at Cranfield University was supported by the Higher Education Commission Pakistan under International Research Support Initiative Programme.


  1. Al-Homidan, A. (2004). 2004 SPRING MEETING OF THE WPSA UK BRANCH POSTERS: Effect of temperature and light regimen on ammonia, dust concentrations and broiler performance. British Poultry Science, 45(1), 35–36.CrossRefGoogle Scholar
  2. Almuhanna, E. A., Ahmed, A. S., & Al-Yousif, Y. M. (2011). Effect of air contaminants on poultry immunological and production performance. International Journal of Poultry Science, 10(6), 461–470.CrossRefGoogle Scholar
  3. Banhazi, T. M., Seedorf, J., Laffrique, M., & Rutley, D. L. (2008). Identification of the risk factors for high airborne particle concentrations in broiler buildings using statistical modelling. Biosystems Engineering, 101(1), 100–110.CrossRefGoogle Scholar
  4. Barrasa, M., Lamosa, S., Fernandez, M. D., & Fernandez, E. (2012). Occupational exposure to carbon dioxide, ammonia and hydrogen sulphide on livestock farms in north-West Spain. Annals of Agricultural and Environmental Medicine, 19(1), 17–24.Google Scholar
  5. Broucek, J., & Cermak, B. (2015). Emission of harmful gases from poultry farms and possibilities of their reduction. Ekologia, 34(1), 89–100.Google Scholar
  6. Burns, R. T., Li, H., Moody, L., Xin, H., Gates, R., Overhults, D., & Earnest, J. (2009). Quantification of particulate emissions from broiler houses in the southeastern United States. In In livestock environment VIII (p. 15). Iguassu Falls, Brazil: ASABE Publication Number 701P0408.Google Scholar
  7. Calvet, S., Van den Weghe, H., Kosch, R., & Estellés, F. (2009). The influence of the lighting program on broiler activity and dust production. Poultry Science, 88(12), 2504–2511.CrossRefGoogle Scholar
  8. Calvet, S., Cambra-López, M., Estelles, F., & Torres, A. G. (2011). Characterization of gas emissions from a Mediterranean broiler farm. Poultry Science, 90(3), 534–542.CrossRefGoogle Scholar
  9. Cambra-López, M., Aarnink, A. J., Zhao, Y., Calvet, S., & Torres, A. G. (2010a). Airborne particulate matter from livestock production systems: a review of an air pollution problem. Environmental Pollution, 158(1), 1–17.CrossRefGoogle Scholar
  10. Cambra-López, M., Hermosilla, T., Lai, H. T., Montero, M., Aarnink, A. J., Ogink, N. W. (2010b). Source identification and quantification of particulate matter emitted from livestock houses. In International Symposium on Air Quality and Manure Management for Agriculture Conference Proceedings Dallas, Texas (p. 41).American Society of Agricultural and Biological Engineers.Google Scholar
  11. Cambra-López, M., Hermosilla, T., Lai, H. T., Aarnink, A. J., & Ogink, N. W. M. (2011). Particulate matter emitted from poultry and pig houses: source identification and quantification. Transactions of the ASABE, 54(2), 629–642.CrossRefGoogle Scholar
  12. Casey, K. D., Bicudo, J. R., Schmidt, D. R., Singh, A., Gay, S. W., Gates, R. S., & Hoff, S. J. (2006). Air quality and emissions from livestock and poultry production/waste management systems (pp. 1–40). ASABE.
  13. Castell, N., Dauge, F. R., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., et al. (2017). Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment International, 99, 293–302.CrossRefGoogle Scholar
  14. Chen, J., Qiu, S., Shang, J., Wilfrid, O. M., Liu, X., Tian, H., & Boman, J. (2014). Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China. Aerosol and Air Quality Research, 14, 260–268.CrossRefGoogle Scholar
  15. Clements, A. L., Griswold, W. G., Rs, A., Johnston, J. E., Herting, M. M., Thorson, J., & Hannigan, M. (2017). Low-cost air quality monitoring tools: from research to practice (a workshop summary). Sensors, 17(11), 2478.CrossRefGoogle Scholar
  16. Conceicao, M. A. P., Johnson, H. E., & Wathes, C. M. (1989). Air hygiene in a pullet house: Spatial homogeneity of aerial pollutants. British Poultry Science, 30(4), 765–776.CrossRefGoogle Scholar
  17. Copeland C (2010). Air quality issues and animal agriculture: A primer. In The CRS report for congress (pp. 1–34).Google Scholar
  18. Corkery, G., Ward, S., Kenny, C., Hemmingway, P. (2013). Monitoring environmental parameters in poultry production facilities. In Computer Aided Process Engineering-CAPE Forum 2013, 2013. Institute for Process and Particle Engineering, Graz University of Technology, Austria.Google Scholar
  19. Donham, K. J., Cumro, D., Reynolds, S. J., & Merchant, J. A. (2000). Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers:: recommendations for exposure limits. Journal of Occupational and Environmental Medicine, 42(3), 260–269.CrossRefGoogle Scholar
  20. Donham, K. J., Cumro, D., & Reynolds, S. (2002). Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. Journal of Agromedicine, 8(2), 57–76.CrossRefGoogle Scholar
  21. Ellen, H. H., Bottcher, R. W., Von Wachenfelt, E., & Takai, H. (2000). Dust levels and control methods in poultry houses. Journal of Agricultural Safety and Health, 6(4), 275–282.CrossRefGoogle Scholar
  22. EMEP-CORINAIR. (2007). EMEP/CORINAIR atmospheric emission inventory guidebook. December 2007 Update (third ed.). Copenhagen: EEA.Google Scholar
  23. GOP (Government of Pakistan) Economic survey of Pakistan (2014), Ministry of Finance,
  24. Halachmi, I., Guarino, M., Bewley, J., & Pastell, M. (2019). Smart animal agriculture: application of real-time sensors to improve animal well-being and production. Annual Review of Animal Biosciences, 7, 403–425.CrossRefGoogle Scholar
  25. Herron, S. L., Brye, K. R., Sharpley, A. N., Miller, D. M., & Daniels, M. B. (2015). Nutrient composition of dust emitted from poultry broiler houses in Northwest Arkansas. Journal of Environmental Protection, 6(11), 1257.CrossRefGoogle Scholar
  26. Hinz, T., Linke, S., Eisenschmidt, R., Muller, H. J., & Bobrutzki, K. V. (2008). Small scale dispersion of ammonia around animal husbandries. LandbauforschungVölkenrode, 58(1), 295–305.Google Scholar
  27. Homidan, A. A., Robertson, J. F., & Petchey, A. M. (2003). Review of the effect of ammonia and dust concentrations on broiler performance. World's Poultry Science Journal, 59(3), 340–349.CrossRefGoogle Scholar
  28. Hussain, J., Rabbani, I., Aslam, S., & Ahmad, H. A. (2015). An overview of poultry industry in Pakistan. World's Poultry Science Journal, 71(4), 689–700.CrossRefGoogle Scholar
  29. Kilic, I., & Yaslioglu, E. (2013). Agricultural development within the rural-urban continuum. Environmental emission from broiler houses in Bursa. Turkey, 16059:
  30. Kocaman, B., Yaganoglu, A. V., & Yanar, M. (2005). Combination of fan ventilation system and spraying of oil-water mixture on the levels of dust and gases in caged layer facilities in Eastern Turkey. Journal of Applied Animal Research, 27(2), 109–111.CrossRefGoogle Scholar
  31. Kocaman, B., Esenbuga, N., Yildiz, A., Lacin, E., & Macit, M. (2006). Effect of environmental conditions in poultry houses on the performance of laying hens. International Journal of Poultry Science, 5(1), 26–30.CrossRefGoogle Scholar
  32. Le Bouquin, S., Huneau-Salaun, A., Huonnic, D., Balaine, L., Martin, S., & Michel, V. (2013). Aerial dust concentration in cage-housed, floor-housed, and aviary facilities for laying hens. Poultry Science, 92(11), 2827–2833.CrossRefGoogle Scholar
  33. Lewis AC, Lee JD, Edwards PM, Shaw MD, Evans MJ, Moller SJ, … White A (2016). Evaluating the performance of low cost chemical sensors for air pollution research. Faraday Discussions 189: 85–103.CrossRefGoogle Scholar
  34. Li, H., Xin, H., Burns, R. T., Hoff, S. J., Harmon, J. D., Jacobson, L. D., & Noll, S. L. (2009). Effects of bird activity, ventilation rate and humidity on PM10 concentration and emission rate of a Turkey barn. In livestock environment VIII, 31 August–4 September 2008 (p. 16). Iguassu Falls, Brazil: American Society of Agricultural and Biological Engineers.Google Scholar
  35. Li, Z., Zheng, W., Wei, Y., Li, B., Wang, Y., & Zheng, H. (2019). Prevention of particulate matter and airborne culturable bacteria transmission between double-tunnel ventilation layer hen houses. Poultry Science, 98(6), 2392–2398.CrossRefGoogle Scholar
  36. Lim, T. T., Heber, A. J., Ni, J. Q., Gallien, J. X., & Xin, H. (2003). Air quality measurements at a laying hen house: Particulate matter concentrations and emissions. In In air pollution from agricultural operations-III (p. 249). American Society of Agricultural and Biological Engineers.Google Scholar
  37. Maqbool, A., Bakhsh, K., Hassan, I., Chattha, M. W. A., & Ahmad, A. S. (2005). Marketing of commercial poultry in Faisalabad city (Pakistan). Journal of Agriculture and Social Sciences, 1(4), 327–331.Google Scholar
  38. Mitchell, B. W., Richardson, L. J., Wilson, J. L., & Hofacre, C. L. (2004). Application of an electrostatic space charge system for dust, ammonia, and pathogen reduction in a broiler breeder house. Applied Engineering in Agriculture, 20(1), 87–93.CrossRefGoogle Scholar
  39. Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, … Gao J (2018). Applications of low-cost sensing technologies for air quality monitoring and exposure assessment: how far have they gone? Environment International 116: 286–299.CrossRefGoogle Scholar
  40. Mostafa, E., & Buescher, W. (2011). Indoor air quality improvement from particle matters for laying hen poultry houses. Biosystems Engineering, 109(1), 22–36.CrossRefGoogle Scholar
  41. Oppliger, A., Charrière, N., Droz, P. O., & Rinsoz, T. (2008). Exposure to bioaerosols in poultry houses at different stages of fattening; use of real-time PCR for airborne bacterial quantification. Annals of Occupational Hygiene, 52(5), 405–412.Google Scholar
  42. Pope, C. A., III, Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 1132–1141.CrossRefGoogle Scholar
  43. Portejoie, S., Martinez, J., & Landmann, G. (2002). Ammonia of farm origin: Impact on human and animal health and on the natural habitat. Productions Animales (France)
  44. Radon, K., Weber, C., Iversen, M., Danuser, B., Pedersen, S., & Nowak, D. (2001). Exposure assessment and lung function in pig and poultry farmers. Occupational and Environmental Medicine, 58(6), 405–410.CrossRefGoogle Scholar
  45. Rai, A. C., Kumar, P., Pilla, F., Skouloudis, A. N., Di Sabatino, S., Ratti, C., … Rickerby, D. (2017). End-user perspective of low-cost sensors for outdoor air pollution monitoring. Science of The Total Environment 607: 691–705.CrossRefGoogle Scholar
  46. Redding, M. R. (2013). Bentonite can decrease ammonia volatilisation losses from poultry litter: laboratory studies. Animal Production Science, 53(10), 1115–1118.CrossRefGoogle Scholar
  47. Redwine, J. S., Lacey, R. E., Mukhtar, S., & Carey, J. B. (2002). Concentration and emissions of ammonia and particulate matter in tunnel–ventilated broiler houses under summer conditions in Texas. Transactions of the ASAE, 45(4), 1101.CrossRefGoogle Scholar
  48. Roumeliotis, T. S., & Van Heyst, B. J. (2007). Size fractionated particulate matter emissions from a broiler house in Southern Ontario, Canada. Science of the Total Environment, 383(1–3), 174–182.CrossRefGoogle Scholar
  49. Scanes, C.G. (2007). The global importance of poultry. 1057–1058.CrossRefGoogle Scholar
  50. Shen, D., Wu, S., Dai, P. Y., Li, Y. S., & Li, C. M. (2018). Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poultry Science, 97(12), 4137–4149.CrossRefGoogle Scholar
  51. Shen, D., Wu, S., Li, Z., Tang, Q., Dai, P., Li, Y., & Li, C. (2019). Distribution and physicochemical properties of particulate matter in swine confinement barns. Environmental Pollution, 250, 746–753.CrossRefGoogle Scholar
  52. Skora, J., Matusiak, K., Wojewódzki, P., Nowak, A., Sulyok, M., Ligocka, A., Okrasa, M., Hermann, J., & Gutarowska, B. (2016). Evaluation of microbiological and chemical contaminants in poultry farms. International Journal of Environmental Research and Public Health, 13(2), 192.CrossRefGoogle Scholar
  53. van Harn, J., Aarnink, A. J. A., Mosquera, J., Van Riel, J. W., & Ogink, N. W. M. (2012). Effect of bedding material on dust and ammonia emission from broiler houses. Transactions of the ASABE, 55(1), 219–226.CrossRefGoogle Scholar
  54. Vucemilo, M., Matkovic, K., Vinkovic, B., Jaksic, S., Granic, K., & Mas, N. (2007). The effect of animal age on air pollutant concentration in a broiler house. Czech Journal of Animal Science, 52(6), 170–174.CrossRefGoogle Scholar
  55. Vucemilo M, Matkovic K, Vinkovic B, Macan J, Varnai VM, Prester LJ, … Orct T (2008). Effect of microclimate on the airborne dust and endotoxin concentration in a broiler house. Czech Journal of Animal Science 53(2): 83–9.CrossRefGoogle Scholar
  56. Wang, S. Y., & Huang, D. J. (2005). Assessment of greenhouse gas emissions from poultry enteric fermentation. Asian-Australasian Journal of Animal Sciences, 18(6), 873–878.CrossRefGoogle Scholar
  57. Wang, Y., Huang, M., Meng, Q., & Wang, Y. (2011). Effects of atmospheric hydrogen sulfide concentration on growth and meat quality in broiler chickens. Poultry Science, 90(11), 2409–2414.CrossRefGoogle Scholar
  58. Witkowska, D., & Sowinska, J. (2017). Identification of microbial and gaseous contaminants in poultry farms and developing methods for contamination prevention at the source. In Poultry science. InTech.Google Scholar
  59. Zhang, J., Wei, X., Jiang, L., Li, Y., Li, M., Zhu, H., Yu, X., Tang, J., Chen, G., & Zhang, X. (2019). Bacterial community diversity in particulate matter (PM2. 5 and PM10) within broiler houses in different broiler growth stages under intensive rearing conditions in summer. The Journal of Applied Poultry Research, 28(2), 479–489.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Roheela Yasmeen
    • 1
    • 2
    Email author
  • Zulfiqar Ali
    • 2
  • Sean Tyrrel
    • 3
  • Zaheer Ahmad Nasir
    • 3
  1. 1.DHA Phase VI, Sector CLahore Garrison UniversityLahorePakistan
  2. 2.University of the PunjabLahorePakistan
  3. 3.School of Water, Energy and EnvironmentCranfield UniversityCranfieldUK

Personalised recommendations