Advertisement

Geographical origin of Vitis vinifera cv. Cannonau established by the index of bioaccumulation and translocation coefficients

  • Salvatore PepiEmail author
  • Milvia Chicca
  • Giulia Piroddi
  • Renzo Tassinari
  • Carmela Vaccaro
Original Research

Abstract

Geochemical fingerprints in grape require an identification of major and trace elements that show correlations between concentrations in soil and in plant tissues: these correlations are relevant to discriminate grapes according to geographical origin. The Vitis vinifera cultivar Cannonau is used to produce the renowned Italian controlled designation of origin (DOC) wine “Cannonau” from Sardinia. Two Cannonau vineyards located in Sardinia Region were studied to establish the relationship between geochemical features of vineyard soil and chemical composition of leaves and grape berries. Major and trace elements were determined by X-ray fluorescence and inductively coupled plasma-mass spectrometry in soil, leaf, and grape berry samples. The index of bioaccumulation and the translocation coefficients were also calculated for all elements. Data from the two study areas were compared by a non-parametric test and multivariate statistics (principal component analysis). The results showed a specific assimilation of these elements in leaf and grape berry from vine in two different soils. Moreover, geochemical characterization and statistical analysis enabled to discriminate the cultivar “Cannonau” according to geographical origin. The results showed that the elements that could establish a reliable correlation between the soil vineyard and leaves and grape berries from the two study areas were B, Sr, and Zr. These elements may therefore be used as geochemical fingerprints to identify the geographic origin of V. vinifera cv. Cannonau in the two study areas.

Keywords

ICP-MS XRF Trace elements Traceability Grape Sardinia 

Notes

Acknowledgments

The authors owe thanks to Piroddi Family for collaboration in collecting samples and to Umberto Tessari for help in analytical procedures.

Funding information

This work was supported by the Department of Physics and Earth Science, University of Ferrara (Ferrara, Italy), Grant No. 2459/2017.

Supplementary material

10661_2019_7544_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
10661_2019_7544_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 17 kb)
10661_2019_7544_MOESM3_ESM.docx (17 kb)
ESM 3 (DOCX 16 kb)
10661_2019_7544_MOESM4_ESM.docx (20 kb)
ESM 4 (DOCX 19 kb)

References

  1. Abreu, M. M., Godinho, B., & Magalhães, M. C. F. (2014). Risk assessment of Arbutus unedo L. fruits from plants growing on contaminated soils in the Panasqueira mine area, Portugal. Journal of Soils and Sediments, 14, 744–757.CrossRefGoogle Scholar
  2. Aceto, M., Robotti, E., Oddone, M., Baldizzone, M., Bonifacino, G., Bezzo, G., Di Stefano, R., Gosetti, F., Mazzucco, E., Manfredi, M., & Marengo, E. (2013). A traceability study on the Moscato wine chain. Food Chemistry, 138, 1914–1922.CrossRefGoogle Scholar
  3. Alagić, S., Tošić, S. B., Dimitrijević, M. D., Antonijević, M. M., & Nujkić, M. M. (2015). Assessment of the quality of polluted areas based on the content of heavy metals in different organs of the grapevine (Vitis vinifera) cv Tamjanika. Environmenatal Science and Pollution Research, 22, 7155–7175.CrossRefGoogle Scholar
  4. Alloway, B. J. (2013). Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability (3rd ed.). Dordrecht: Springer Science Business Media.Google Scholar
  5. Álvarez, M., Moreno, I. M., Jos, Á., Cameán, A. M., & González, A. G. (2007). Differentiation of two Andalusian DO “fino” wines according to their metal content from ICP-OES by using supervised pattern recognition methods. Microchemical Journal, 87, 72–76.CrossRefGoogle Scholar
  6. Amorós, J. A., Pérez-de-los Reyes, C., García Navarro, F. J., Bravo, S., Chacón, J. L., Martínez, J., & Jiménez Ballesta, R. (2013). Bioaccumulation of mineral elements in grapevine varieties cultivated in La Mancha. Journal of Plant Nutrition and Soil Science, 176, 843–850.CrossRefGoogle Scholar
  7. Amoròs, J. A., Garcia Navarro, F. J., Pérez de los Reyes, C., Campos Gallego, J. A., Bravo Martín-Consuegra, S., Jiménez Ballesta, R., & Moreno, R. G. (2012). Geochemical influence of soil on leaf and grape (Vitis vinifera L. “Cencibel”) composition in La Mancha region (Spain). Vitis, 51, 111–118.Google Scholar
  8. Angelova, V. R., Ivanov, A. S., & Braikov, D. M. (1999). Heavy metals (Pb, Cu, Zn and Cd) in the system soil - grapevine - grape. Journal of the Science of Food and Agriculture, 79, 713–721.CrossRefGoogle Scholar
  9. Barker, A. L., & Pilbeam, D. J. (2015). Handbook of plant nutrition (2nd ed.). Boca Raton: Taylor & Francis Group, LLC..CrossRefGoogle Scholar
  10. Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., García, F. J., Moreno, M. M., Sánchez-Ormeño, M., & Higueras, P. (2015). Influence of the soil pH in the uptake and bioaccumulation of heavy metals (Fe, Zn, Cu, Pb and Mn) and other elements (Ca, K, Al, Sr and Ba) in vine leaves, Castilla-La Mancha (Spain). Journal of Geochemical Exploration, 174, 79–83.  https://doi.org/10.1016/j.gexplo.2015.12.012.CrossRefGoogle Scholar
  11. Buscaroli, A. (2017). An overview of indexes to evaluate terrestrial plants for phytoremediation purposes (Review). Ecological Indicators, 82, 367–380.CrossRefGoogle Scholar
  12. Carmignani, L. G., Oggiano, A., Funedda, P., & Conti Pasci, S. (2016). The geological map of Sardinia (Italy) at 1:250.000 scale. Journal of Maps, 12, 826–835.CrossRefGoogle Scholar
  13. Censi, P., Saiano, F., Pisciotta, A., & Tuzzolino, N. (2014). Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils. Science of the Total Environment, 473-474, 597–608.CrossRefGoogle Scholar
  14. Concas, S., Lattanzi, P., Bacchetta, G., Barbafieri, M., & Vacca, A. (2015). Zn, Pb and Hg contents of Pistacia lentiscus L. grown on heavy metal-rich soils: implications for phytostabilization. Water, Air, & Soil Pollution, 206, 340–355.CrossRefGoogle Scholar
  15. Cozzolino, D. (2015). Elemental composition in grapes and wine: role, analytical methods and their use. In M. De la Guardia & S. Garrigues (Eds.), Handbook of mineral elements in food (pp. 470–487). Valencia: Wiley.Google Scholar
  16. Cugnetto, A., Santagostini, L., Rolle, L., Guidoni, S., Gerbi, V., & Novello, V. (2014). Tracing the “terroirs” via the elemental composition of leaves, grapes and derived wines in cv Nebbiolo (Vitis vinifera L.). Scientia Horticulturae, 172, 101–108.CrossRefGoogle Scholar
  17. D’Antone, C., Punturo, R., & Vaccaro, C. (2017). Rare earth elements distribution in grapevine varieties grown on volcanic soils : an example from Mount Etna (Sicily, Italy). Environmental Monitoring and Assessment, 189, 160–176.CrossRefGoogle Scholar
  18. De la Guardia, M., & Garrigues, S. (2015). Handbook of mineral elements in food. Valencia: Wiley.Google Scholar
  19. Drivelos, S. A., & Georgiou, C. A. (2012). Multi-element and multi-isotope-ratio analysis to determine the geographical origin of foods in the European Union. Trends in Analytical Chemistry, 40, 38–51.CrossRefGoogle Scholar
  20. Dry, P. R., & Coombe, B. G. (2005). Viticulture volume 1-resources (2nd ed.). Ashford: Winetitles.Google Scholar
  21. Fabani, M. P., Arrúa, R. C., Vázquez, F., Diaz, M. P., Baroni, M. V., & Wunderlin, D. A. (2010). Evaluation of elemental profile coupled to chemometrics to assess the geographical origin of Argentinean wines. Food Chemistry, 119, 372–379.CrossRefGoogle Scholar
  22. Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., Wold, S. (2006). Multi- and megavariate data analysis. Part I: Basic Principles and Applications. Umea: Umetrics Academy.Google Scholar
  23. Fedo, C. M., Nesbitt, H. W., & Young, G. M. (1995). Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology, 23, 921–924.CrossRefGoogle Scholar
  24. Feng, J., Lin, Y., Yang, Y., Shen, Q., Huang, J., Wang, S., Zhu, X., & Li, Z. (2018). Tolerance and bioaccumulation of Cd and Cu in Sesuvium portulacastrum. Ecotoxicology and Environmental Safety, 147, 306–312.CrossRefGoogle Scholar
  25. Fregoni, M. (2013). Viticoltura di qualità. Trattato dell’eccellenza da Terroir (3rd ed.). Milan: Tecniche nuove.Google Scholar
  26. Galgano, F., Favati, F., Caruso, M., Scarpa, T., & Palma, A. (2008). Analysis of trace elements in southern Italian wines and their classification according to provenance. Journal of Food Science and Technology, 41, 1808–1815.Google Scholar
  27. Gonzalvez, A., & De la Guardia, M. (2013). Mineral profile. In M. De la Guardia & A. Gonzalvez (Eds.), Food protected designation of origin, methodologies and applications (pp. 51–76). Valencia: Elsevier.CrossRefGoogle Scholar
  28. Granato, D., Margraf, T., Santos, É. N. T., de Andrade, E. F., & van Ruth, S. M. (2016). Effects of geographical origin, variety and farming system on the chemical markers and in vitro antioxidant capacity of Brazilian purple grape juices. Food Research International, 82, 145–155.CrossRefGoogle Scholar
  29. Harnois, L. (1988). The CIW index - a new chemical index of weathering. Sedimentary Geology, 55, 319–322.CrossRefGoogle Scholar
  30. Hopfer, H., Nelson, J., Collins, T. S., Heymann, H., & Ebeler, S. E. (2015). The combined impact of vineyard origin and processing winery on the elemental profile of red wines. Food Chemistry, 172, 486–496.CrossRefGoogle Scholar
  31. Hossain, I., Roy, K. K., Biswas, P. K., Alam, M., Moniruzzaman, M., & Deeba, F. (2014). Geochemical characteristics of Holocene sediments from Chuadanga district, Bangladesh: implications for weathering, climate, redox conditions, provenance and tectonic setting. Chinese Journal of Geochemistry, 30, 336–350.CrossRefGoogle Scholar
  32. Hu, X., Ding, Z., Chen, Y., Wang, X., & Dai, L. (2002). Bioaccumulation of lanthanum and cerium and their effects on the growth of wheat (Triticum aestivum L.) seedlings. Chemosphere, 48, 621–629.CrossRefGoogle Scholar
  33. Kabata-Pendias, A. (2011). Trace elements in soils and plants. Boca Raton: Taylor & Francis Group.Google Scholar
  34. Kot, F. S. (2009). Boron sources, speciation and its potential impact on health. Reviews in Environmental Science and Bio/Technology, 8, 3–28.CrossRefGoogle Scholar
  35. Luykx, D. M. A. M., & van Ruth, S. M. (2008). An overview of analytical methods for determining the geographical origin of food products. Food Chemistry, 107, 897–911.CrossRefGoogle Scholar
  36. Mabrouk, H., & Sinoquet, H. (1998). Indices of light microclimate and canopy structure of grapevines determined by 3D digitising and image analysis, and their relationship to grape quality. Australian Journal of Grape and Wine Research, 4, 2–13.CrossRefGoogle Scholar
  37. Mantrov, V. (2014). EU Law on indications of geographical origin theory and practice. Berlin: Springer.Google Scholar
  38. Marchionni, S., Braschi, E., Tommasini, S., Bollati, A., Cifelli, F., Mulinacci, N., Mattei, M., & Conticelli, S. (2013). High-precision 87 Sr/ 86 Sr analyses in wines and their use as a geological fingerprint for tracing geographic provenance. Journal of Agricultural and Food Chemistry, 61, 6822–6831.CrossRefGoogle Scholar
  39. Mercurio, M., Grilli, E., Odierna, P., Morra, V., Prohaska, T., Coppola, E., Grif, A. C., Buondonno, A., & Langella, A. (2014). A “Geo-Pedo-Fingerprint” (GPF) as a tracer to detect univocal parent material-to-wine production chain in high quality vineyard districts, Campi Flegrei (Southern Italy). Geoderma, 230, 64–78.CrossRefGoogle Scholar
  40. Nesbitt, H. W., & Young, G. M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, 715–717.CrossRefGoogle Scholar
  41. Pepi, S., & Vaccaro, C. (2018). Geochemical fingerprints of ‘Prosecco’ wine based on major and trace elements. Environmental Geochemistry and Health, 40, 833–847.CrossRefGoogle Scholar
  42. Pepi, S., Coletta, A., Crupi, P., Leis, M., Russo, S., Sansone, L., Tassinari, R., Chicca, M., & Vaccaro, C. (2016a). Geochemical characterization of elements in Vitis vinifera cv. Negroamaro grape berries grown under different soil managements. Environmental Monitoring and Assessment, 188, 211–216.CrossRefGoogle Scholar
  43. Pepi, S., Sansone, L., Chicca, M., Marrocchino, E., & Vaccaro, C. (2016b). Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environmental Monitoring and Assessment, 188, 477.  https://doi.org/10.1007/s10661-016-5490-1.CrossRefGoogle Scholar
  44. Pepi, S., Sansone, L., Chicca, M., & Vaccaro, C. (2017). Relationship among geochemical elements in soil and grapes as terroir fingerprintings in Vitis vinifera L. cv. “Glera”. Chemie der Erde, 77, 121–130.CrossRefGoogle Scholar
  45. Pepi, S., Grisenti, P., Sansone, L., Chicca, M., & Vaccaro, C. (2018a). Chemical elements as fingerprints of geographical origin in cultivars of Vitis vinifera L. raised on the same SO4 rootstock. Environmental Science and Pollution Research, 25, 490–506.CrossRefGoogle Scholar
  46. Pepi, S., Sardella, S., Bonazza, A., & Vaccaro, C. (2018b). Geochemical caper fingerprints as a tool for geographical origin identification. Environmental Geochemistry and Health, 40, 1385–1403.CrossRefGoogle Scholar
  47. Pepi, S., Chicca, M., Telloli, C., Di Roma, A., Grisenti, P., Tessari, U., & Vaccaro. (2019, 2019). Discrimination of geographical origin of hop (Humulus lupulus L.) using geochemical elements combined with statistical analysis. Environmental Geochemistry and Health.  https://doi.org/10.1007/s10653-018-0232-7.CrossRefGoogle Scholar
  48. Pii, Y., Zamboni, A., Santo, S. D., Pezzotti, M., Varanini, Z., & Alcalde, J. A. (2017). Prospect on ionomic signatures for the classification of grapevine berries according to their geographical origin. Frontiers in Plant Science, 8.  https://doi.org/10.3389/fpls.2017.00640.
  49. Pisciotta, A., Tutone, L., & Saiano, F. (2017). Distribution of YLOID in soil-grapevine system ( Vitis vinifera L.) as tool for geographical characterization of agro-food products . A two years case study on different grafting combinations. Food Chemistry, 221, 1214–1220.CrossRefGoogle Scholar
  50. Portinale, L., Leonardi, G., Arlorio, M., Coïsson, J. D., Travaglia, F., & Locatelli, M. (2017). Authenticity assessment and protection of high-quality Nebbiolo-based Italian wines through machine learning. Chemometrics and Intelligent Laboratory Systems, 171, 182–197.CrossRefGoogle Scholar
  51. Potortì, G. A., Lo Turco, V., Saitta, M., Bua, G. B., Tropea, A., Dugo, G., & Di Bella, G. (2017). Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Natural Product Research, 31, 1000–1005.CrossRefGoogle Scholar
  52. Punturo, R., D’Antone, C., Pepi, S., & Vaccaro, C. (2018). Rare earth elements absorption patterns in grapevine “Vitis vinifera L.” cultivated in carbonate terrains (south-eastern Sicily, Italy). Environmental Earth Sciences, 77, 801.  https://doi.org/10.1007/s12665-018-7989-y.CrossRefGoogle Scholar
  53. Price, J. R., & Velbel, M. A. (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chemical Geology, 202, 397–416.CrossRefGoogle Scholar
  54. Rencher, A. C. (2002). Methods of multivariate analysis (2nd ed.). New York: Wiley.CrossRefGoogle Scholar
  55. Rodrigues, M., Otero, M., Alves, A., Coimbra, J., Coimbra, M. A., Pereira, E., & Duarte, A. C. (2011). Elemental analysis for categorization of wines and authentication of their certified brand of origin. Journal of Food Composition and Analysis, 24, 548–562.CrossRefGoogle Scholar
  56. Šelih, V. S., Šala, M., & Drgan, V. (2014). Multi-element analysis of wines by ICP-MS and ICP-OES and their classification according to geographical origin in Slovenia. Food Chemistry, 153, 414–423.CrossRefGoogle Scholar
  57. Shao, J., Yang, S., & Li, C. (2012). Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China : inferences from analysis of fluvial sediments. Sedimentary Geology, 265-266, 110–120.CrossRefGoogle Scholar
  58. Taboada, T., Rodríguez-Lado, L., Ferro-Vázquez, C., Stoops, G., & Martínez, A. (2016). Chemical weathering in the volcanic soils of Isla Santa Cruz. Geoderma, 261, 160–168.CrossRefGoogle Scholar
  59. Tian, Y., Yan, C., Zhang, T., Tang, H., Li, H., Yu, J., Bernard, J., Chen, L., Martin, S., Delepine-Gilon, N., Bocková, J., Veis, P., Chen, Y., & Yu, J. (2017). Classification of wines according to their production regions with the contained trace elements using laser-induced breakdown spectroscopy. Spectrochimica Acta Part B, 135, 91–101.CrossRefGoogle Scholar
  60. Van Couter, Y., & d’Ath, F. (2016). Protecting the origin of foodstuffs in the European Union. Indications of origin and trademarks as intellectual property tools. EFFL, 11, 290–308.Google Scholar
  61. Versari, A., Laurie, V. F., Ricci, A., Laghi, L., & Parpinello, G. P. (2014). Progress in authentication, typification and traceability of grapes and wines by chemometric approaches. Food Research International, 60, 2–18.CrossRefGoogle Scholar
  62. Volpe, M. G., La Cara, F., Volpe, F., De Mattia, A., Serino, V., Petitto, F., Zavalloni, C., Limone, F., Pellecchia, R., De Prisco, P. P., & Di Stasio, M. (2009). Heavy metal uptake in the enological food chain. Food Chemistry, 117, 553–560.CrossRefGoogle Scholar
  63. Vystavna, Y., Rätsep, R., Klymenko, N., Drozd, O., Pidlisnyuk, V., & Klymenko, M. (2015). Comparison of soil-to-root transfer and translocation coefficients of trace elements in vines of Chardonnay and Muscat white grown in the same vineyard. Scientia Horticulturae, 192, 89–96.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Physics and Earth SciencesUniversity of FerraraFerraraItaly
  2. 2.Department of Life Science and BiotechnologiesUniversity of FerraraFerraraItaly

Personalised recommendations