Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Conserving terrestrial linkages that connect natural landscapes of the Korean Peninsula

Abstract

Human-induced land degradation fragments natural ecosystems, hinders ecological processes, and threatens biodiversity. Maintaining or restoring ecological flows across landscapes through landscape linkages may provide a solution. Here, we identify a peninsula-wide ecological connectivity network for the Korean Peninsula using two linkage mapping models. We found three major north-south axes of connectivity traversing the Demilitarized Zone (DMZ), which emerged as an important east-west linkage. Only 7% of the highest-ranked connections are currently secured by protected areas. We found 120 linkages in North and South Korea that are intersected by road networks consisting of motorways and trunk roads under both models. These locations should be the focus of immediate attention for conservation planners, as well as 274 and 1130 additional road-impacted linkages under one model or the other. The results can be used for policy support, and potentially as a basis for the two countries to engage in discussions about ecosystem health and climate change adaptation. The approach presented here can also be efficiently used to assess and map natural landscape linkages.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bae, J. S., Joo, R. W., & Kim, Y.-S. (2012). Forest transition in South Korea: reality, path and drivers. Land Use Policy, 29(1), 198–207.

  2. Baguette, M., Blanchet, S., Legrand, D., Stevens, V. M., & Turlure, C. (2013). Individual dispersal, landscape connectivity and ecological networks. Biological Reviews, 88(2), 310–326. https://doi.org/10.1111/brv.12000.

  3. Barabás, G., Michalska-Smith, M. J., & Allesina, S. (2017). Self-regulation and the stability of large ecological networks. Nature Ecology & Evolution, 1(12), 1870–1875. https://doi.org/10.1038/s41559-017-0357-6.

  4. Bontemps, S., Defourny, P., van Bogaert, E., Arino, O., Kalogirou, V., & Perez, J. R. (2011). GlobCover 2009, products description and validation report. Louvain-la-Neuve: European Space Agency, Frascati, Italy, and Universite’ Catholique de Louvain.

  5. Borgatti, S. P., & Everett, M. G. (2006). A graph-theoretic perspective on centrality. Social Networks, 28, 466–484.

  6. Brooks, C. P. (2003). A scalar analysis of landscape connectivity. Oikos, 102(2), 433–439.

  7. Broxton, P. D., Zeng, X., Sulla-Menashe, D., & Troch, P. A. (2014). A global land cover climatology using MODIS data. Journal of Applied Meteorology and Climatology, 53(6), 1593–1605. https://doi.org/10.1175/jamc-d-13-0270.1.

  8. Carroll, C., McRae, B. H., & Brookes, A. (2012). Use of linkage mapping and centrality analysis across habitat gradients to conserve connectivity of gray wolf populations in western North America. Conservation Biology, 26(1), 78–87. https://doi.org/10.1111/j.1523-1739.2011.01753.x.

  9. Carroll, C., Parks, S. A., Dobrowski, S. Z., & Roberts, D. R. (2018). Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, Accepted Author Manuscript. https://doi.org/10.1111/gcb.14373.

  10. Choe, H., Thorne, J. H., Hijmans, R., Kim, J., Kwon, H., & Seo, C. (2017). Meta-corridor solutions for climate-vulnerable plant species groups in South Korea. Journal of Applied Ecology, 54(6), 1742–1754. https://doi.org/10.1111/1365-2664.12865.

  11. Choi, Y. K. (2004). Baekdudaegan, the central axis of the Korean peninsular: the path toward management strategies regarding to its concepts. In S.-K. Hong, J. A. Lee, B.-S. Ihm, A. Farina, Y. Son, E.-S. Kim, et al. (Eds.), Ecological issues in a changing world: status, response and strategy (pp. 355–384). Dordrecht: Kluwer Academic Publisher.

  12. Crooks, K. R., & Sanjayan, M. A. (2006). Connectivity conservation. Cambridge: Cambridge University Press.

  13. DiMiceli, C. M., Carroll, M. L., Sohlberg, R. A., Huang, C., Hansen, M. C., & Townshend, J. R. G. (2011). Annual global automated MODIS vegetation continuous fields (MOD44B) at 250 m spatial resolution for data years beginning day 65, 2000–2010, collection 5 percent tree cover. College Park: University of Maryland. http://www.landcover.org/data/vcf/. Accessed 18 July 2017.

  14. ESRI. (2012). ArcGIS, Version 10.1. Redlands, California, USA.

  15. ESRI. (2019). ArcGIS - World Imagery Map Service. Retrieved from https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9. Accessed 28 Apr 2019.

  16. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419.

  17. Foley, J., DeFries, R., Asner, G., Barford, C., Bonan, G., Carpenter, S., et al. (2005). Global consequences of land use. Science, 309(5734), 570–574.

  18. Forman, R. T. T., & Alexander, L. E. (1998). Roads and their major ecological effects. Annual Review of Ecology and Systematics, 29, 207–231.

  19. Forman, R. T. T., Sperling, D., Bissonette, J. A., Clevenger, A. P., Cutshall, C. D., Dale, V. H., et al. (2003). Road ecology: science and solutions. Covelo: Island Press.

  20. Galpern, P., Manseau, M., & Fall, A. (2011). Patch-based graphs of landscape connectivity: a guide to construction, analysis and application for conservation. Biological Conservation, 144(1), 44–55. https://doi.org/10.1016/j.biocon.2010.09.002.

  21. Girardet, X., Conruyt-Rogeon, G., & Foltête, J.-C. (2015). Does regional landscape connectivity influence the location of roe deer roadkill hotspots? European Journal of Wildlife Research, 61, 731–742.

  22. Gonzalez, J. R., Barrio, G. d., & Duguy, B. (2008). Assessing functional landscape connectivity for disturbance propagation on regional scales—a cost-surface model approach applied to surface fire spread. Ecological Modelling, 211(1), 121–141. https://doi.org/10.1016/j.ecolmodel.2007.08.028.

  23. Harrison, S., & Bruna, E. (1999). Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22(3), 225–232.

  24. Heller, N. E., & Zavaleta, E. S. (2009). Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biological Conservation, 142, 14–32.

  25. IUCN and UNEP-WCMC. (2017). The World Database on Protected Areas (WDPA) [on-line], [November 2017 of the version downloaded]. Cambridge: UNEP-WCMC. Available at: www.protectedplanet.net. Accessed 16 Nov 2017.

  26. Kang, S., & Choi, W. (2014). Forest cover changes in North Korea since the 1980s. Regional Environmental Change, 14(1), 347–354. https://doi.org/10.1007/s10113-013-0497-4.

  27. Kang, W., Minor, E. S., Lee, D., & Park, C.-R. (2016a). Predicting impacts of climate change on habitat connectivity of Kalopanax septemlobus in South Korea. Acta Oecologica, 71, 31–38. https://doi.org/10.1016/j.actao.2016.01.005.

  28. Kang, W., Minor, E. S., Woo, D., Lee, D., & Park, C.-R. (2016b). Forest mammal roadkills as related to habitat connectivity in protected areas. Biodiversity and Conservation, 25(13), 2673–2686. https://doi.org/10.1007/s10531-016-1194-7.

  29. Keeley, A. T. H., Ackerly, D. D., Cameron, D. R., Heller, N. E., Huber, P. R., Schloss, C. A., Thorne, J. H., & Merenlender, A. M. (2018). New concepts, models, and assessments of climate-wise connectivity. Environmental Research Letters, 13(7), 073002.

  30. Kim, K.-G., & Cho, D.-G. (2005). Status and ecological resource value of the Republic of Korea’s De-militarized Zone. Landscape and Ecological Engineering, 1(1), 3–15.

  31. Krauss, J., Bommarco, R., Guardiola, M., Heikkinen, R. K., Helm, A., Kuussaari, M., Lindborg, R., Öckinger, E., Pärtel, M., Pino, J., Pöyry, J., Raatikainen, K. M., Sang, A., Stefanescu, C., Teder, T., Zobel, M., & Steffan-Dewenter, I. (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecology Letters, 13(5), 597–605.

  32. Krosby, M., Tewksbury, J., Haddad, N. M., & Hoekstra, J. (2010). Ecological connectivity for a changing climate. Conservation Biology, 24(6), 1686–1689. https://doi.org/10.1111/j.1523-1739.2010.01585.x.

  33. Lee, S.-D., & Miller-Rushing, A. J. (2014). Degradation, urbanization, and restoration: a review of the challenges and future of conservation on the Korean Peninsula. Biological Conservation, 176, 262–276. https://doi.org/10.1016/j.biocon.2014.05.010.

  34. Marrotte, R. R., & Bowman, J. (2017). The relationship between least-cost and resistance distance. PLoS One, 12(3), e0174212. https://doi.org/10.1371/journal.pone.0174212.

  35. Marulli, J., & Mallarach, J. M. (2005). A GIS methodology for assessing ecological connectivity: application to the Barcelona Metropolitan Area. Landscape and Urban Planning, 71(2–4), 243–262. https://doi.org/10.1016/j.landurbplan.2004.03.007.

  36. McCarty, J. P. (2001). Ecological consequences of recent climate change. Conservation Biology, 15(2), 320–331.

  37. McGarigal, K., Tagil, S., & Cushman, S. A. (2009). Surface metrics: an alternative to patch metrics for the quantification of landscape structure. Landscape Ecology, 24(3), 433–450.

  38. McRae, B. H., Dickson, B. G., Keitt, T. H., & Shah, V. B. (2008). Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology, 89(10), 2712–2724. https://doi.org/10.1890/07-1861.1.

  39. Ministry of Environment (ME). (2014). Republic of Korea’s fifth national report to the United Nations convention on biological diversity. Available online: https://www.cbd.int/doc/world/kr/kr-nr-05-en.pdf. Accessed 26 Nov 2017.

  40. Moilanen, A. (2011). On the limitations of graph theoretic connectivity in spatial ecology and conservation. Journal of Applied Ecology, 48(6), 1543–1547.

  41. Newman, M. E. J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27, 39–54.

  42. Opdam, P., & Wascher, D. (2004). Climate change meets habitat fragmentation: linking landscape and biogeographical scale levels in research and conservation. Biological Conservation, 117(3), 285–297.

  43. OpenStreetMap contributors. (2015). OpenStreetMap South and North Korea. http://download.geofabrik.de. Accessed 15 Nov 2017.

  44. Park, S., Jeon, S., Kim, S., & Choi, C. (2011). Prediction and comparison of urban growth by land suitability index mapping using GIS and RS in South Korea. Landscape and Urban Planning, 99(2), 104–114. https://doi.org/10.1016/j.landurbplan.2010.09.001.

  45. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.

  46. Pinto, N., & Keitt, T. H. (2009). Beyond the least-cost path: evaluating corridor redundancy using a graph-theoretic approach. Landscape Ecology, 24(2), 253–266.

  47. Rho, P., Choung, H.-L., & Bae, S.-Y. (2005). GIS-based wildlife habitat management strategies in Korea (p. 73). Seoul: Korea Environment Institute.

  48. Sanderson, E. W., Jaiteh, M., Levy, M. A., Redford, K. H., Wannebo, A. V., & Woolmer, G. (2002). The human footprint and the last of the wild. Bioscience, 52(10), 891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2.

  49. Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology, 5(1), 18–32.

  50. Seo, C., Thorne, J. H., Choi, T., Kwon, H., & Park, C.-H. (2015). Disentangling roadkill: the influence of landscape and season on cumulative vertebrate mortality in South Korea. Landscape and Ecological Engineering, 11(1), 87–99. https://doi.org/10.1007/s11355-013-0239-2.

  51. Spencer, W., Beier, P., Penrod, K., Winters, K., Paulman, C., Rustigian-Romsos, H., et al. (2010). California essential habitat connectivity project: a strategy for conserving a connected California. Prepared for California Department of Transportation, California Department of Fish and Game, and Federal Highways Administration.

  52. Statistics Korea (The Korean Government Official Statistics Website). (2017). Available online: http://kostat.go.kr/portal/eng/index.action. Accessed on 28 Apr 2017.

  53. Stephens, S. E., Koons, D. N., Rotella, J. J., & Willey, D. W. (2004). Effects of habitat fragmentation on avian nesting success: a review of the evidence at multiple spatial scales. Biological Conservation, 115(1), 101–110.

  54. Taylor, P. D., Fahrig, L., Henein, K., & Merriam, G. (1993). Connectivity is a vital element of landscape structure. Oikos, 68(3), 571–573.

  55. Teng, M., Wu, C., Zhou, Z., Lord, E., & Zheng, Z. (2011). Multipurpose greenway planning for changing cities: a framework integrating priorities and a least-cost path model. Landscape and Urban Planning, 103(1), 1–14. https://doi.org/10.1016/j.landurbplan.2011.05.007.

  56. Theobald, D. M., Crooks, K. R., & Norman, J. B. (2011). Assessing effects of land use on landscape connectivity: loss and fragmentation of western U.S. forests. Ecological Applications, 21(7), 2445–2458. https://doi.org/10.1890/10-1701.1.

  57. Theobald, D. M., Reed, S. E., Fields, K., & Soulé, M. (2012). Connecting natural landscapes using a landscape permeability model to prioritize conservation activities in the United States. Conservation Letters, 5(2), 123–133. https://doi.org/10.1111/j.1755-263X.2011.00218.x.

  58. Thorne, J. H., Cameron, D., & Quinn, J. F. (2006). A conservation design for the Central Coast of California and the evaluation of mountain lion as an umbrella species. Natural Areas Journal, 26(2), 137–148. https://doi.org/10.3375/0885-8608(2006)26[137:ACDFTC]2.0.CO;2.

  59. Urban, D., Minor, E., Treml, E., & Schick, R. (2009). Graph models of habitat mosaics. Ecology Letters, 12(3), 260–273.

  60. Vitousek, P. M., Mooney, H. A., Lubchenco, J., & Melillo, J. M. (1997). Human domination of Earth’s ecosystems. Science, 277(5325), 494–499. https://doi.org/10.1126/science.277.5325.494.

  61. Zuidema, P. A., Sayer, J. A., & Dijkman, W. (1996). Forest fragmentation and biodiversity: the case for intermediate-sized conservation areas. Environmental Conservation, 23(04), 290–297.

Download references

Funding

This study is supported by the Korea Ministry of Environment (MOE, Project No. 2016000210004) as “Public Technology Program based on Environmental Policy.”

Author information

Correspondence to Youngkeun Song.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Thorne, J.H., Kim, G. et al. Conserving terrestrial linkages that connect natural landscapes of the Korean Peninsula. Environ Monit Assess 191, 385 (2019). https://doi.org/10.1007/s10661-019-7520-2

Download citation

Keywords

  • Corridors
  • Graph theory
  • Landscape connectivity
  • Landscape fragmentation
  • Landscape permeability
  • The Korean Demilitarized Zone