Advertisement

Monitoring of arsenic, mercury and organic pesticides in particulate matter, ambient air and settled dust in natural history collections taking the example of the Museum für Naturkunde, Berlin

  • Katharina DeeringEmail author
  • Elise Spiegel
  • Christiane Quaisser
  • Dennis Nowak
  • Rudolf Schierl
  • Stephan Bose-O’Reilly
  • Mercè Garí
Article

Abstract

Chemical compounds such as arsenic, mercury and organochlorine pesticides have been extensively used as preventive and curative conservation treatments for cultural and biological collections to protect them from pest and mould infestations. Most of the aforementioned compounds have been classified as carcinogenic, mutagenic and teratogenic and represent a health risk for staff exposed to contaminated objects. A total of 30 compounds were analysed in settled dust, particulate matter and surrounding air collected at several locations in the natural history collections and adjacent rooms of the Museum für Naturkunde, Berlin (MfN, Natural History Museum, Berlin, Germany). Gas chromatography and mass spectrometry techniques were used to quantify dichlorodiphenyltrichloroethane (2,4′-DDT; 4,4′-DDT) and their metabolites (2,4′-DDE; 4,4′-DDE; 2,4′-DDD; 4,4′-DDD), hexachlorobenzene (HCB), 3 isomers of hexachlorocyclohexanes (α-HCH, β-HCH, γ-HCH), the degradation product of γ-HCH with similar toxicological profile, gamma-pentachlorocyclohexene (γ-PCH) and pentachlorophenol (PCP). Atomic absorption spectrometry was used to analyse arsenic and mercury. In order to assess the pathways of contamination with biocides in dust, formations of particulate matter during individual daily work activities, particle number concentrations (PNCs) were measured. Heavy element concentrations found at the MfN were higher than the organochlorine compounds. The maximum concentration of arsenic and mercury in dust was 3507 mg/kg and 32 mg/kg, respectively, and in air, 48 ng/m3 and 1.6 ng/m3, respectively. The maximum concentration of the sum of DDTs in dust was 2 mg/kg (not detected in air); for PCP, the maximum levels in dust and air were 0.65 mg/kg and 10 ng/m3, respectively; for γ-HCH, 130 mg/kg and 320 ng/m3, respectively; and finally, for γ-PCH, 2.1 mg/kg and 230 ng/m3, respectively. Twelve PNC measurements were obtained from seven different collection rooms and the diaries of the participants’ activities. PNCs were highly variable between work activities. Higher personal PNCs were associated with activities like opening storage boxes with prepared animals, reading old books or handling objects. This study has shown that taxidermic objects in museum collection may be a cause for arsenic exposure during handling of objects.

Keywords

Conservation Preservation Natural history collections Occupational exposure Arsenic Organochlorine pesticides Particulate matter 

Notes

Funding

This study was funded by the Deutsche Bundesstiftung Umwelt DBU (German Federal Environmental Foundation, grant number AZ 33687/01).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Arbeitsgemeinschaft ökologischer Forschungsinstitute e.V. (AGÖF) (2017). AGÖF-Orientierungswerte für mittel- und schwerflüchtige organische Verbindungen und Schwermetalle im Hausstaub. http://www.agoef.de/orientierungswerte/agoef-hausstaub-orientierungswerte.html. Accessed 02.01. 2017.
  2. Arndt, W. (1932). Die Berufskrankheiten an naturwissenschaftlichen Museen I. Museumskunde, 4(2), 47–66.Google Scholar
  3. Banks, S. B. (2015). Managing risks from hazardous substances in the economic botany collection at the Royal Botanic Gardens, Kew: a pragmatic approach. Journal of the Institute of Conservation, 38(2), 130–145.CrossRefGoogle Scholar
  4. Bartoll, J., Unger, A., Püschner, K., & Stege, H. (2003). Micro-XRF investigations of chlorine-containing wood preservatives in art objects. Studies in conservation, 48(3), 195-202.Google Scholar
  5. Bartsch, P., Quaisser, C., Giere, P., Theuer-Kock, A., & Feck, N., (2013). New meets old–the requirements and limits of new collection facilities at the Museum für Naturkunde Berlin. In Climate for collections-standards and uncertainties. Postprints of the Munich climate conference 7 to 9 November 2012, (pp. 163–178).Google Scholar
  6. Briggs, D., Sell, P., Block, M., & I'ons, R. (1983). Mercury vapour: a health hazard in herbaria. New Phytologist, 94(3), 453–457.CrossRefGoogle Scholar
  7. Brown, T. (1870). The taxidermist’s manual, or, the art of collecting, preparing, and preserving objects of natural history: designed for the use of travellers, conservators of museums and private collectors: A. Fullarton & Company.Google Scholar
  8. Bundesgesundheitsblatt. (2008). Gesundheitliche Bedeutung von Feinstaub in der Innenraumluft - Mitteilung der Ad-hoc-Arbeitsgruppe Innenraumrichtwerte der Innenraumlufthygiene-Komission des Umweltbundesamtes und der Obersten Landesgesundheitsbehörden. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 51, 1370–1378.CrossRefGoogle Scholar
  9. Charlton, A., Hutton, S., Domoney, K., & Uden, J. (2014). Pesticide residues on the Cook-Voyager Collection as the Pitt Rivers Museum, University of Oxford. In Icom–CC 17th Triennial Conference Melbourne. Paris: International Council of Museums.Google Scholar
  10. Cross, P. S., & Odegaard, N. (2009). The inherent levels of arsenic and mercury in artifact materials. Collection F, 23(1–2), 23–35.Google Scholar
  11. Dangeon, M., (2016). Contamination des collections naturalisées traitées aux biocides et mesures de conservation préventive. Arsenic, mercure et lindane dans la collection Mammifères et Oiseaux du Muséum d’Histoire Naturelle de Neuchâtel. In CeROArt. Conservation, exposition, Restauration d'Objets d'Art, (Vol. 5): CeROArt asbl.Google Scholar
  12. Farber, P. L. (1977). The development of taxidermy and the history of ornithology. Isis, 68(4), 550–566.CrossRefGoogle Scholar
  13. Giere, P., Bartsch, P., & Quaisser, C. (2018). BERLIN: From Humboldt to HVac—The zoological collections of the Museum für Naturkunde Leibniz Institute for Evolution and Biodiversity Science in Berlin. In Zoological collections of Germany (pp. 89–122): Springer.Google Scholar
  14. Gribovich, A., Lacey, S., Franke, J., & Hinkamp, D. (2013). Assessment of arsenic surface contamination in a museum anthropology department. Journal of Occupational and Environmental Medicine, 55(2), 164–167.  https://doi.org/10.1097/JOM.0b013e3182717e51.CrossRefGoogle Scholar
  15. Hagemeyer, O., Weiß, T., Marek, R., & Brüning, T. (2015). Harnblasenkrebs durch Arsen bei einer Museumsrestauratorin - Einsatz von Konservierungsmitteln als wahrscheinliche Ursache. IPA-Journal, 4.Google Scholar
  16. Hall, A. H. (2002). Chronic arsenic poisoning: Elsevier Ireland Ltd.Google Scholar
  17. Havermans, J., Dekker, R., & Sportel, R. (2015). The effect of mercuric chloride treatment as biocide for herbaria on the indoor air quality. Heritage Science, 3(1), 39.CrossRefGoogle Scholar
  18. Holt, E., Audy, O., & Booij, P. (2017). Organochlorine pesticides in the indoor air of a theatre and museum in the Czech Republic: inhalation exposure and cancer risk: Elsevier B.V.Google Scholar
  19. Hong, Y.-S., Song, K.-H., & Chung, J.-Y. (2014). Health effects of chronic arsenic exposure: Korean Society for Preventive Medicine.Google Scholar
  20. Kleinwächter, F. (1891). Das Museum für Naturkunde der Universität Berlin. Zeitschrift für Bauwesen, 41(1–3), p. 1–12.Google Scholar
  21. Krooß, J., & Stolz, P. (1993). Innenraumbelastung von Museumsmagazinen durch biozide Wirkstoffe. Staub. Reinhaltung der Luft, 53(7–8), 301–305.Google Scholar
  22. Leimbrock, W., & Wagner, B. (1998). Ermittlung der Gefahrstoffbelastung durch Insektizide und Konservierungsmittel bei Tierpräparatoren und Mitarbeitern in zoologischen Sammlungen und Ausstellungen. Der Präparator, 44(3/4), 111–122.Google Scholar
  23. Linnie, M. J. (1987). Pest control: a survey of natural history museums in Great Britain and Ireland: Taylor & Francis Group.Google Scholar
  24. Marcotte, S., Estel, L., & Leboucher, S. (2014). Occurrence of organic biocides in the air and dust at the Natural History Museum of Rouen, France: Elsevier Masson SAS.Google Scholar
  25. Marcotte, S., Estel, L., Minchin, S., Leboucher, S., & Le Meur, S. (2017). Monitoring of lead, arsenic and mercury in the indoor air and settled dust in the Natural History Museum of Rouen (France). Atmospheric Pollution Research, 8(3), 483–489.CrossRefGoogle Scholar
  26. Martin, P. L. (1879). Die Anwendung des Arseniks und anderer Stoffe bei der Natrualien-Präparation in gesundheitlicher Beziehung. Ornithologisches Centralblatt. Organ für Wissenschaft und Verkehr. Nachrichtenblatt des gesammten Vereins-Wesens und Anzeiger für Sammler, Züchter und Händler, 5(Beiblatt zum Journal für Ornithologie), 33–35.Google Scholar
  27. Martin, P. L. (1886). Die Praxis der Naturgeschichte. Ein vollständiges Lehrbuch über das Sammeln lebender und toter Naturkörper; deren Beobachtung, Erhaltung und Pflege im freien und gefangenen Zustande; Konservation, Präparation und Aufstellung in Sammlungen (Vol. 3). Weimar: Voigt, Bernhard Friedrich.Google Scholar
  28. Microsoft. (2010). Microsoft Office Excel (Version 14.0). https://products.office.com/de-de/excel.
  29. Musshoff, F., Gottsmann, S., Mitschke, S., Rosendahl, W., & Madea, B. (2010). Potential occupational exposures in the Reiss-Engelhorn-Museen Mannheim/Germany. Bulletin of Environmental Contamination and Toxicology, 85(6), 638–641.CrossRefGoogle Scholar
  30. Naujokas, M. F., Anderson, B., & Ahsan, H. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem: National Institute of Environmental Health Sciences.Google Scholar
  31. Naumann, J. F. (1848). Taxidermie oder die Lehre Thiere aller Klassen am einfachsten und zweckmässigsten für Naturaliensammlungen auszustopfen und aufzubewahren. Halle: Schwetschke.Google Scholar
  32. Odegaard, N., Smith, D. R., Boyer, L. V., & Anderson, J. (2006). Use of handheld XRF for the study of pesticide residues on museum objects. Collection Forum, 20(1-2),42-48.Google Scholar
  33. Omstein, L. (2010). Poisonous heritage: pesticides in museum collections. Seton Hall University.Google Scholar
  34. Oyarzun, R., Higueras, P., Esbrí, J., & Pizarro, J. (2007). Mercury in air and plant specimens in herbaria: a pilot study at the MAF herbarium in Madrid (Spain). Science of the Total Environment, 387(1), 346–352.CrossRefGoogle Scholar
  35. Plenderleith, H., & Werner, A. (1962). The conservation of antiquities and works of art - treatment, repair, and restoration (Vol. 3). London, New York. Toronto: Oxford University Press.Google Scholar
  36. R Core Team. (2017). R: A language and environment for statistical com‐puting. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org.
  37. Rowley, J. (1925). Taxidermy and museum exhibition: D. Appleton.Google Scholar
  38. Schieweck, A., Delius, W., Siwinski, N., Vogtenrath, W., Genning, C., & Salthammer, T. (2007). Occurrence of organic and inorganic biocides in the museum environment. Atmospheric Environment, 41(15), 3266–3275.CrossRefGoogle Scholar
  39. Schieweck, A., Lohrengel, B., Siwinski, N., Genning, C., & Salthammer, T. (2005). Organic and inorganic pollutants in storage rooms of the Lower Saxony State Museum Hanover, Germany. Atmospheric Environment, 39(33), 6098–6108.CrossRefGoogle Scholar
  40. Schmidt, O. (2001). Insecticide contamination at the National Museum of Denmark: a case study. Collection, 16(1–2), 92–95.Google Scholar
  41. Schulze-Hagen, K., Steinheimer, F., Kinzelbach, R., & Gasser, C. (2003). Avian taxidermy in Europe from the Middle Ages to the renaissance. Journal für Ornithologie, 144(4), 459–478.CrossRefGoogle Scholar
  42. Seifert, S. A., Boyer, L. V., Odegaard, N., Smith, D. R., & Dongoske, K. E. (2000). Arsenic contamination of museum artifacts repatriated to a Native American tribe. Jama, 283(20), 2658-2659.Google Scholar
  43. Sirois, P. J. (2001). The analysis of museum objects for the presence of arsenic and mercury: Nondestructive analysis and sample analysis. Paper presented at the Collection Forum.Google Scholar
  44. Spiegel, E., Paz, B., & Maraun, W. (2016). Wenn Museumsobjekte gefährlich werden. Maßnahmen der präventiven Konservierung sollen Objekte schützen und dürfen Mitarbeitern nicht schaden. Daher wird Arbeitsschutz in Museen immer wichtiger. ICOM Deutschland - Mitteilungen 2016, 48–49.Google Scholar
  45. Steinheimer, F. (2005). The whereabouts of pre-nineteenth century bird specimens. Zoologische Mededelingen, 79(3), 45–67.Google Scholar
  46. Strekopytov, S., Brownscombe, W., Lapinee, C., Sykes, D., Spratt, J., Jeffries, T. E., & Jones, C. G. (2017). Arsenic and mercury in bird feathers: Identification and quantification of inorganic pesticide residues in natural history collections using multiple analytical and imaging techniques. Microchemical Journal, 130, 301–309.CrossRefGoogle Scholar
  47. Tello, H. (2009). Die Büchse der Pandora: Zum Einsatz von Schädlingsbekämpfungsmitteln an Kunst- und Kulturgut: Böhlau Verlag GmbH & CIE.Google Scholar
  48. TRGS 900 (2006). Technische Regeln für Gefahrstoffe, Arbeitsplatzgrenzwerte. Ausschuss für Gefahrstoffe.Google Scholar
  49. WHO (2000). Air quality guidelines for Europe.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Katharina Deering
    • 1
    Email author
  • Elise Spiegel
    • 2
  • Christiane Quaisser
    • 3
  • Dennis Nowak
    • 1
  • Rudolf Schierl
    • 1
  • Stephan Bose-O’Reilly
    • 1
  • Mercè Garí
    • 1
  1. 1.Institute and Clinic for Occupational, Social and Environmental MedicineUniversity Hospital of LMU MunichMunichGermany
  2. 2.Care for ArtGrünwaldGermany
  3. 3.Museum für NaturkundeLeibniz Institute for Research on Evolution and BiodiversityBerlinGermany

Personalised recommendations